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The Larmor clock and the particle absorption approaches to the tunneling time are reexamined
and extended to cover two- and three-dimensional systems and multichannel scattering. We show
that both of them can be viewed as particular cases of the recent stay-time method. Furthermore, the
barrier traversal time proposed by Biittiker on the basis of the Larmor clock is found to correspond
to the root-mean-square value of the actual tunneling time, rather than to the mean tunneling time.

The question of determining the characteristic times
in the motion of a particle in a classically forbidden re-
gion is still receiving considerable attention. Several ar-
ticles have appeared recently which address the whole
subject and compare the various approaches to the tun-
neling time problem.»2 One recent work® proposes an
approach based on Feynman path integrals, and allows
us to obtain a real-valued mean time spent by the par-
ticle in a given region (which is called “stay time”) and
also the standard deviation of its distribution. Moreover,
this approach explains the results of many other studies
addressing the subject from different points of view.

In this Brief Report we consider two well known ap-
proaches to the tunneling time problem, basically con-
sisting of applying a perturbation to the region of in-
terest. We refer to the method based on the Larmor
precession,® 7 where the perturbation is a uniform mag-
netic field, and to the one based on the absorption of
particles in the barrier,® 1% where the perturbation is
a uniform pure imaginary potential, which acts on the
wave function as an optical “absorber.” The equivalence
of these approaches has been demonstrated by Muga,
Brouard, and Sala!® using the projection operator tech-
nique.

We show that these approaches can be easily viewed as
particular cases of the stay-time method.3 In order to do
this, we reformulate both the approaches considered in
such a way that their validity is extended to multichannel
scattering and to two- and three-dimensional systems.
Moreover, this procedure sheds new light on the time
proposed by Biittiker on the basis of the Larmor clock.®

It has been shown3 that the time spent by a particle in
a given region of space {2 can be obtained by adding at
time to a uniform perturbative potential V to the region
being considered, in such a way that the Hamiltonian
Hy (V,to;r,t) of the system is

Hy (V,to;r,t) = Ho(r,t) + Vu(t — t)Oq(r), (1)

where ﬁo is the Hamiltonian in the absence of perturba-
tion, @q(r) equals 1ifr € Q and 0 otherwise, and u(t—to)
is the Heaviside function. The particle is described by a
wave function Wy (V,to;r,t) which is the solution of the
Schrédinger equation:

Hy (V,to;r,t) Ty (V, to; T, t) = ih;%\llv(V, to;r,t),  (2)
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h being the reduced Planck’s constant. We call ¥q(r,t)
the wave function of the unperturbed system, i.e.,
Yo(ry,t1) = Ty (0,to;11,11).

By exploiting the properties of Feynman path integrals
we have proposed that the mean time spent in Q from
time to to t; by a particle which is found in r; at ¢; is

208} "
Ty OV
We have called 7(to;r1,%¢1) mean “stay time.”

This method also allows us to obtain the mean-
square stay time 72(tg;rq,t;) and the standard deviation
or(to;r1,t1) of the stay time, in the forms, respectively,

?(to;l‘l,tl) = Re {

V=0

2

ik 0%y

T, OV
th 0¥y

or(to;T1,t1) ‘Im {‘I’o ov }V:O ’ @

where, in (3)-(5), Ty (V,to;r,t) is valued in r; at ¢;.

The stay-time approach is shown to be self-consistent
and effective in deriving the results of studies addressing
the tunneling time from different points of view. Ex-
cept for the approach based on Bohm’s causal interpre-
tation of quantum mechanics pioneered and recently re-
viewed by Leavens et al.,'!? virtually all the other ap-
proaches can be derived by the means of the stay-time
method.? The Biittiker-Landauer method of the oscillat-
ing barrier!® will be addressed elsewere. Here we want to
show that the stay-time approach is a useful tool for ob-
taining the results of the methods based on the Larmor
clock and on particle absorption.

72(to;T1, 1) =

(4)

PARTICLE ABSORPTION METHOD

This method has the undoubted virtue of being very in-
tuitive. It is well known that a state with a finite lifetime
can be described by adding a pure imaginary component
to the energy of the state. If we apply a uniform pure
imaginary potential —iI'/2 to the whole space at time o,
the Schrodinger equation becomes

o’

3 .F 1 .
[HQ—Z—Z-’U.(t-to) ' =ih ot . (6)
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It can be easily verified that the solution of (6) is ¥’/ =
Uoexp{—(T'/2)A(t — to)u(t — to)}, where, as we wrote
above, ¥y is the solution of the unperturbed equation
[Eq. (6) with I' = 0]. Therefore, after integrating the
probability density on the whole space, we write

/ |¥'(r,t)|>dr = exp [—%(t — to)u(t — to)

x / o (r, )| 2dr, (7)

i.e., the probability of finding the particle decays expo-
nentially from the moment the absorbing potential is ap-
plied with a characteristic time constant 7/ = %/T", which
is the mean lifetime of the state.

The basic idea®1° for obtaining the time spent in  is
to apply the absorbing potential —iI'/2 at time to only
to region 2, and to state that, at least to first order in
T", the probability density in r; at ¢t; has the form

| ¥ (T, to;r1,1)|% = |To(ry, t1)]?
X exp[—(r/ﬁ)Tabs(tO; ry, tl)]7 (8)
where Taps(to;T1,t1) is assumed to be the mean time

spent in £, in the time interval (¢o,t1), by the particle
found in r; at ¢1, and ¥r (T, to;r,t) solves the equation

H, - igu(t - to)(-)g(r)} Y = ihagir. (9)

From (8) we can draw a definition of Tabs(to;T1,%1) as

kP
[Tol2 T

Tabs(to;T1,t1)=

I'=0
2h 8Vr
= Re {—\D_OT?T"}

where Pq(r,t) and ¥r(T,to;r,t) are valued in r; at t;.
Comparison of (9) with (1) and (2) straightforwardly
yields (details are given in the Appendix)

; (10)
=0

o¥r
ar

1 0¥y

=3 av (1)

=0 V=0

This result, after substitution in (10), allows us to obtain
ith 0¥y
Tabs(to;T1,t1)= Re { 7, __5—17—} oo
= T(to;l‘l,tl), (12)
i.e., the time obtained by superimposing an imaginary
absorbing potential on the region € coincides with the
mean stay time in £ given by (3).

LARMOR CLOCK METHOD

The Larmor clock method was originally proposed by
Baz’® and Rybachenko® and has been successively re-
examined by several authors.®71471€ We formulate this
method in a slightly different way, in order to extend its
range of applicability and put in evidence its relations
with the stay-time approach.

In this case the perturbative element is a uniform mag-
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netic field B applied to the region Q at time tq. Let its
direction be the z axis (B = [0,0, BOgq(r)u(t — to)])-

It is worth noting that not all system configurations
are feasible. The point is that the lines of flux of the
magnetic field must be closed lines. This implies that
while one-dimensional and two-dimensional regions are
always feasible (the lines of flux can pass through the
considered plane far enough from the system not to affect
wave function evolution), the situation is different for
three-dimensional regions. In this case the region {2 has
to be chosen in such a way that the lines of flux of the
magnetic field pass, out of Q, only through regions in
which the wave function is almost vanishing, for instance,
regions where the potential is almost infinite.

In the following calculations we shall assume that the
magnetic field is confined only to region € and that, if it
is present also in other regions, this fact does not affect
wave function evolution, because the wave function in
these regions is practically zero.

The Hamiltonian to be dealt with is

Hp = [[~ihV — qA(r,t)]?/2m + Vo(r, )]

xI — (hwy, [/2)0,Oq(r)u(t — to), (13)
where 0, 0y, and o, are the Pauli spin matrices, I is the
unit 2 X 2 matrix, m and ¢ are the mass and the charge
of the particle, respectively, wy, = ¢B/m is the Larmor
precession frequency, Vo (r,t) is the scalar potential, and
A is the vector potential such as B(r,t) = V A A(r,?).
The wave function is a two-component vector

VE(B,to;r,t )
Pp(B,to;T,t) = (\ngB tz.r t; ) (14)

Let the spinors of the unperturbed wave function ¥4 be
labeled '~I'aL and ¥ and let ¥, be polarized before tg in
a direction perpendicular to the magnetic field, say, the
z direction, implying ¥f = ¥, for t < to. If there is
no magnetic field the electron conserves its spin so that
U¢ = ¥, for any t. We are not interested in normalized
wave function so let us assume \Ilf = W,.
A particle found in r; at time t; has spin expectation
values in the three directions
E¥ho,¥p
S (to: t )= - B ¥" 2
< y( 0;T1, 1)) ) ‘I’*B‘I’B
_ RIm{¥Z"¥L}
TR T — =
Vp'Vp + ¥ ¥
h¥go,¥p
(S:(to;r1,t1))= EW

AT TSR T
PR 2l T s T

(16)
(Se(tosr1,t1)) = (52/4 - (Sy(to;l‘1,t1)>2

1/2
“<5z(to;l‘1,t1))2) ) (17)

where ¥g is valued in ry at ¢;. There are two concur-
ring effects in the change of spin orientation. One is
Larmor precession, according to which the spin rotates
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on a plane perpendicular to the magnetic field direction
(the zy plane in our case) with constant frequency wy.
The other is the Zeeman effect, according to which elec-
trons with spin along the magnetic field direction acquire
energy fuwy, /2 and particles with spin in the opposite di-
rection lose the same energy resulting in different behav-
ior with respect to a given potential configuration, and
in varying spin expectation values along the z axis. In
particular, in the case of tunneling of a potential bar-
rier, particles polarized in the direction of magnetic field
have a greater probability of traversing the barrier, so
that the z-axis component of the spin expectation value
of the tunneled particles increases.

According to the well known methods based on the
Larmor clock,® one can define three characteristic times,
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(S, (to;T1,t1))
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BwL B=0 ( )

S AR

Tz (to;T1,t1) =

1/2
Te(to;T1,t1) = [Ty(to;rl,tl)z + 72 (tosT1,t1)%] 7. (20)

Now, let us add to the region Q at time ¢, a constant
potential V also. Therefore, the Hamiltonian is

Hpy = Hp + VOgq(r)u(t — to), (21)
and the corresponding wave function is

WYgy(B,V,te;r,t). Let us note that if V = 0 ¥y re-
duces to the ¥ of (14) and if B = 0 each component of
W gy reduces to Uy solution of (2).

7y (to; 71, t1) = 2 9(Sy(to;T1,t1)) (18) The Hamiltonian Hpy of (21) is a 2x 2 diagonal matrix
et I3 Owy, Beo and can be written as
J

A H}, (B, V,to;1,t) 0
Hpv(B,V,to;r,t) = | BV "0 22
(B Vitoir) = | A3, (B,Vytoir,) | (22)

[
where \ wr. Biittiker® afterwards proposed that the whole spin
o ) _ [-iAV — qA(r,1)] rotation had to be considered (precession on the zy plane
Hpy (B, V,to;r,t) = 2m + Vo(r,t) and Zeeman rotation) and that it was linear with respect
hwr, to time with the same constant wy, at least to first or-
+ (V + T) Oq(r)u(t — to). der. This idea leads one to consider 7, as the actual time
(23) spent in the forbidden region.

Let us point out that

Hgy(B,V,to;r,t) = HEy[B,V!(B), to;r,t],  (24)
where V/(B) = V + hwy, i.e., the Hamiltonian for the
spinor ¥, with a perturbative potential V is equal to
the Hamiltonian for ¥%,, with a perturbative potential
V'(B) =V + hwy. Given that at time to we have ¥} =
Y5 = ¥, we can write

Vo (B, V,to;r,t) = UL, (B, V/(B),to; 1, t). (25)
It is shown in the Appendix that from (25) we obtain

awL B=0 av B=0 ’
V=0 V=0
or, more simply,
vy - \Ilg] - vy 27)
dwr, B=0 WV |y—o

Substitution of (27) in (3), (4), and (15)—(20) yields

Ty(to;T1,t1) = T(to;T1,t1), (28)
|7z (tosT1,t1)| = o~ (to; T2, 1), (29)
Tz(to;T1,t1) = [;f(to;l'htl)]l/z- (30)

The time 7, was originally proposed by Baz’* and
Rybachenko® as the time spent by the particle in the
region 2. The underlying assumption is that spin pre-
cession in the classically forbidden region is still propor-
tional, at least to first order, to the Larmor frequency

From (28) and (30) it can be seen that the mean stay
time in Q is equal to the Larmor time 7,, and the time
7, proposed by Biittiker is the root-mean-square (rms)
stay time. To first order in wr, we have

(Sy(tosT1,t1))= —(h/2)wrTy(to;T1,t1)
= —(k/2)wrT(to; T1,%1), (31)
and, to second order in wy,, we have

(Sa(tos Ty, t1))= (B/2) [1 — wilra(ry,t1)]/2]
= (B/2)[1 — wiT2(to;r1,t1)/2]. (32)
It is interesting to note that 7, appears squared in (32);
the mean variation of the spin expectation value in the z

direction is proportional to 72; therefore, it seems highly
plausible to give 7, the meaning of rms time spent in Q.

DISCUSSION

We have shown that the methods for defining and ob-
taining the tunneling time based on particle absorption
and on the Larmor clock can be seen as particular cases
of the stay time method.

Since the times T,ps and 7, are equal to the mean stay
time, they satisfy, in the case of the tunneling time, the
same consistency requirements, i.e., the additivity over
different regions and over different scattering channels,
the consistency with the dwell time defined on a different
basis by other authors,'”'® and with the time of passage
through a surface.® They also suffer from the same prob-
lems, i.e., possible superluminal velocities and nonzero
reflection times in regions on the far side of a barrier.
These questions have already been pointed out in the
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case of the Larmor clock approach by Leavens et al.l®
and have been addressed in the case of the stay time>
and there is no need to propose the same considerations
again.

We want just to point out that the approaches reviewed
in this paper, extend their field of validity to two- and
three-dimensional problems and to multichannel scatter-
ing. Moreover, the unification of different approaches
helps to make order in the great number of proposals
concerning the tunneling time problem.

We have found that the time proposed by Biittiker on
the basis of Larmor clock is actually equal to the rms
stay time. The effect of this statement is twofold: on one
hand it attributes to 7, and 7, a physical meaning, in
the sense that they are actual characteristic times of the
tunneling process; on the other hand it sheds a different
light on the time proposed by Biittiker.

One of the unphysical properties of the time proposed
by Biittiker is that transmission and reflection times are
both greater than the dwell time. This is impossible from
a classical point of view and is usually attributed, in a
quantum mechanical framework, to some interference ef-
fects. From the point of view of the stay time the reason
is simply that Biittiker times for transmission and re-
flection are rms times, so it is not strange that they are
greater than the dwell time, which is a mean time.

The time Biittiker finds in the case of Larmor clock is
equal to the time obtained by the means of the oscillat-
ing barrier approach.!® Also in that case, we have shown
that what is defined is the square of the characteristic
interaction time,!? so it is not surprising to us that the
resulting time is, again, a mean square time.

Finally, 7, is shown to be equal to the standard de-
viation of the stay time. It is also equal to the imag-
inary part of the complex time obtained by Sokolovski
and Baskin.?’ Schulman and Ziolkowski have shown?!
that the major contribution to the propagator through
a potential barrier comes from a path corresponding to
a time spent under the barrier which is pure imaginary
and equal to 7,. Since the real and imaginary parts of the
complex pole of a scattering matrix define the location
and width of the resonance, respectively, these authors
argue that the imaginary time is a measure of the ef-
fective spread in significant tunneling times. Also, these
considerations support and strengthen our interpretation
of |7.| as the standard deviation o.
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APPENDIX

In order to derive (11), let us perform the derivative
with respect to V of the Schrodinger equation (2) and
evaluate it for V = 0; we obtain

- L 0] 0%y
Hy(r,t) —ith—| — = - — ;
[ o(r,t) —1 at] v |, Oq(r)u(t —to)¥Yo;

(A1)
then let us differentiate (9) with respect to I" and evaluate
it for T' = 0, i.e.,

- L, 0] 20%rp
Hy(r,t) —ith—| ——— = - .
[ o(r,t) zﬁat] i ar |, Oq(r)u(t —to) Yo
(A2)
Adding (A2) and (A1) yields
- ., 0 Py | 2 0¥r
t) —ih—| [ —r o= =0.
e ong) (], ) ) =
(A3)
It follows directly that
oy 2 OUp =
—_— = — — — \P1 A4
6V V=0 t 8F I'=0 * ( )

where ¥ is any solution of the unperturbed Schrodinger
equation, and can be uniquely determined by the initial
conditions.

For t < to the derivatives in (A4) are null, because
both the pertubations are not yet introduced; therefore,
¥ = 0. As a solution of the unperturbed Schrédinger
equation, ¥ conserves the norm, implying that it remains
null for ¢ > t; also.

Now, in order to derive (26), let us point out that the
second term of (25) depends on B also through V'(B) =
V + hwr, because wy, is proportional to B. Therefore, by
performing on (25) the total derivative with respect to
B, we obtain

0Vgy, oV}, 0vE, oV'(B)

0B ~ OB ov' 8B ’

where W}, /0V' = 0¥, /8V and 8V'(B) /0wy, = h. If

we remember that wy, is proportional to B we can write
(A5) as

(A5)

_ 9%y

Vg, oV}

A—BY A6
8wL 8wL v ( )
For B =0 and V = 0 it follows that V'(B) = 0 and we
finally obtain (26).
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