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Abstract We have developed a code for the simulation of
the electrical and magnetic properties of silicon quantum
dots in the framework of the TCAD Package NANOTCAD-
ViDES. We adopt current spin density functional theory with
a local density approximation and with the effective mass
approximation. We show that silicon quantum dots exhibit
large variations of the total spin as the number of electrons
in the dot and the applied magnetic field are varied. Such
properties are mainly due to the silicon band structure, and
make silicon quantum dots interesting systems for spintronic
and quantum computing experiments.

Keywords Current spin density functional theory . Silicon
quantum dot . Spintronics

1 Introduction

Silicon-based spintronics is the subject of intense research,
mainly for two reasons. First, silicon technology is the
most advanced semiconductor technology, thanks to decades
of unparalleled investments. Compatibility with silicon in-
creases by orders of magnitude the chances for a proposed
solution to acquire industrial relevance. Second, spin in sil-
icon has a large coherence time, which makes the material
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interesting for applications in which conservation of coher-
ence of the wavefunction is required, such as quantum com-
puting. Therefore, a few all-silicon spintronic devices have
been proposed in recent years [1–5].

The spin of semiconductor quantum dots is considered
an interesting option for the implementation of qubits. The
case of silicon quantum dots seems particularly promising
[1, 3], because the multiple degeneracy of the conduction
band can lead to a very high total spin. Some experiments
have been performed, but are not conclusive on this aspect [6].
From the simulation point of view, there are a few papers in
the literature in which the spin properties of III-V quantum
dots in a magnetic field are computed, but none that focuses
on silicon, probably because of the complexity of silicon
conduction and valence bands, which makes simulation more
cumbersome.

We have implemented a three dimensional simulator of
semiconductor structures containing silicon quantum dots
immersed in a magnetic field based on Current Spin Density
Functional Theory (CSDFT) [7], in the framework of the
NanoTCAD ViDES package. In this paper, we discuss the
physical model and the numerical approach we adopt, and
we present the simulation of sample quantum dot structures,
in order to demonstrate what quantities can be simulated,
and to compute the very high total spin that is achievable in
silicon quantum dots.

2 Physical model and numerical aspects

The electrostatic potential is obtained by solving the three-
dimensional Poisson equation in the whole simulation do-
main, including both “quantum” and “semiclassical” charge
densities as source terms. The quantum charge density is ob-
tained by solving the many body Schrödinger equation in
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the so-called “quantum” regions, identified as the regions in
which quantum confinement is significant. The semiclassi-
cal charge density is only a function of the local potential
and is the charge density in those regions of the simulation
domain in which quantum confinement is considered to be
negligible.

The many body Schrödinger equation is solved with CS-
DFT, using the local density approximation and the effective
mass approximation with parabolic bands. CSDFT allows
one to fully take into account the effect of magnetic field
and spin, and is strictly applicable only to the calculation of
ground states.

The single particle Schrödinger equation must be solved
for each spin and for each pair of minima in the conduction
band (or ! degenerate or quasi-degenerate). It reads [7]:

[
p2

2m∗ + e
2m∗ (p · A+A · p)+ V + Vxc

]
"i, j,σ = Ei, j,σ"i, j,σ

(1)

where p = −ih̄∇ and A = A0 + Axc. A0 is the vector poten-
tial, V is the scalar potential, including Hartree and Zeeman
terms.

Axc and Vxc are the exchange-correlation vector and scalar
potentials, respectively, computed as indicated in Ref. [8, 9]
as a function of the local spin up and spin down electron den-
sities, and of the local paramagnetic current density. "i, j,σ

and Ei, j,σ are the i-th eigenfunctions and eigenvalues, re-
spectively, of the j-th pair of minima ( j = 1, 2, 3), with spin
σ (σ = +0.5, −0.5). All single particle states are then cu-
mulatively ordered and occupied in the order of increasing
energy.

In Fig. 1 the flowchart illustrating the self-consistent so-
lution of the Schrödinger and Poisson equations is shown.
From a numerical point of view, the Schrödinger equation
has been solved in momentum space [10], while the over-
all solution has been computed using the Newton/Raphson
(NR) method with the Gummel interactive scheme. In partic-
ular, the Schrödinger equation is solved at the beginning of
the each NR cycle of the Poisson equation, and the electron
charge is kept constant until the NR cycle converges. The
algorithm is then repeated periodically until the two-norm of
the difference between the potential computed at the end of
two subsequent NR cycles is smaller than 1 meV or the differ-
ence between two consecutive values of the electrochemical
potential is smaller than 1 µeV.

3 Numerical results

The structure considered in our simulation is shown in
Fig. 2. It is an MOS structure with p-type silicon bulk
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Fig. 1 Flowchart illustrating the iteration for the self-consistent solu-
tion of Poisson and Schrödinger equations

Fig. 2 Simulated device structure. The base of the silicon quantum dot
is a square L × L , with L = 10, 20, 30 nm

NA = 2 × 1019 cm−3, 8 nm layer of silicon oxide and metal
gate. An undoped silicon dot with height 4 nm and square
base L × L is embedded in the oxide layer. We consider three
different dot sizes, corresponding to L = 10, 20, and 30 nm.
The magnetic field is uniform along the vertical (z) direction.
We assume a silicon gyromagnetic factor of 2.6.

In Fig. 3 the addition energy of the three considered struc-
tures is shown for a number of electrons ranging from 1 to
49. It is particularly interesting the fact that convergence is
obtained also for a very large number of electrons. Odd-even
pairing is evident, as well as some features of the compli-
cated shell structure. The electron density in the dot and the
total spin for the case L = 20 nm are shown in Fig. 4 and in
Fig. 5, respectively.
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Fig. 3 Addition energy for the three simulated structures at zero mag-
netic field for 1 to 50 electrons in the dot

Fig. 4 Electron density for 1 to 49 electrons in the dot for the 20 nm
structure at zero magnetic field

One can observe that very large spins can be obtained,
and that the addition of a single electron can substan-
tially modify the total spin of the dot. This is due to
the very important role played by the exchange potential
and by the fact the three pairs of degenerate minima are
present in silicon conduction band. Indeed, several single
particle states are very close in energy, and their order-
ing and occupation is substantially modified by changes
in the exchange potential due to the addition of a single
electron.

The electrochemical potential, given by Slater’s rule [11],
is plotted as a function of the magnetic field in Fig. 6. As
can be seen, evident changes of the total spin occur when
the magnetic field modifies the ordering of single particle
levels and in particular changes the spin of the highest oc-
cupied single particle level. The situation is shown in detail
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Fig. 5 Total spin for 1 to 50 electrons placed in the dot for the 20 nm
structure at zero magnetic field
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Fig. 6 Electrochemical potential for the 20 nm structure from 25 to 30
electrons. Numbers placed on each curve indicate the total spin
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Fig. 7 Highest single particle energy level for the 20 nm structure
when 26 electrons are in the dot as a function of magnetic field. Spin
up and spin down single particle energies have opposite dependencies
on the magnetic field, due to Zeeman effect. The bold line represents
the electrochemical potential

in Fig. 7 for 25.5 electrons in the dot. In Fig. 7 the energies
of the highest occupied single particle levels are plotted as a
function of the magnetic field. The 26-th single particle level
represents the electrochemical potential of the dot µ(26). As
can be seen, for B = 2.6 Tesla, the ordering changes and the
total spin changes from −1 to +1.
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4 Conclusion

We have developed a code for the simulation of silicon quan-
tum dots with current spin density functional theory, that al-
lows us to simulate the electrical and spin properties of dots
with up to 50 electrons in the presence of magnetic field.
Silicon quantum dots exhibit a very rich spin behavior, due
to the complex band structure, that is very intriguing and can
be very interesting for spintronic applications.
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