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Abstract

The combined effect of quantum confinement at the Si/SiO2 interface and the discrete distribution of dopants in the

active area has been considered in ultrashort channel MOSFETs, via a numerical solution of the three-dimensional

self-consistent Poisson/Schrödinger equation. Focusing our attention on the so-called “well tempered” bulk-Si n-

MOSFETs with channel length of 25 and 50 nm proposed by D. Antoniadis, we have simulated a large number of

devices with the same doping profile, but with different actual discrete distribution of impurities, and have extracted

the threshold voltage distribution. We have found that the threshold voltage standard deviation is of the order of tens

of millivolt, and that it is affected by quantum confinement in the channel.

Index Terms

Poisson/Schodinger, random dopant, well-tempered MOSFET, threshold voltage distribution.

I. INTRODUCTION

Device simulation is a fundamental tool in CMOS technology development to understand and predict transistor

behavior. To achieve this goal, modern simulators have to take into account effects that are relevant for present and

future technology nodes, and that are going to have increasing relevance as geometries are reduced.

Indeed, in state of the art transistors, the number of ionized impurities is of the order of hundreds, and stochastic

variations of the number and of the position of the dopants occur, due to the random nature of ion implantation and

diffusion. These microscopic variations greatly affect macroscopic quantities such as off-state current and threshold

voltage, as demonstrated experimentally in1 .

In order to understand, predict and control the effects of discrete dopants, analytical modeling and numerical

simulations have been performed in the last decade. A simple one-dimensional analytical model that takes into

account the fluctuations of the total number of dopants and of the positions, has been proposed in2,3 , and

considerably improved in4 . Three-dimensional simulations capable of taking into account the random position

of ionized impurities in all directions, that is important in very short devices, have been performed in5−7 . It is

worth noticing that such works are based on semiclassical simulations, in which quantum effects are not considered

at all.

However, devices with channel lengths of the order of tens of nanometers and oxide thickness in the range of

1-3 nm, are significantly affected by quantum confinement2,8 . The high electric field in the direction perpendicular

to the Si/SiO2 interface, due to the reduced gate oxide thickness and the increased bulk doping, strongly confines

electrons in the channel and induces well-separated 2D subbands. Such effect must be considered to make reliable

prediction of device properties.

The influence of quantum effects on the dispersion of the threshold voltage has been addressed by Asenov9 by

means of the density gradient formalism.

Such approach, however, is a rude approximation of the self-consistent solution of the Poisson/Schrödinger

equation, requires a previous calibration for the particular structure, and the error is not easily controllable in
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the case of rapidly varying potentials. Therefore, we propose to perform a full quantum simulation, based on the

self-consistent solution of the Poisson/Schrödinger equation with density functional theory.

To this purpose we have developed a code for the simulation in three dimensions of MOSFETs with ultra-narrow

channel, taking into account quantum confinement in the channel and depletion of the polysilicon gate. A controlled

approximation allows to simplify the computation of the density of states in the channel.

We present results for the so-called “Well tempered” bulk-Si n-MOSFETs with channel length and width of 25

and 50 nm proposed by D. Antoniadis10 as benchmark structures for the simulation of nanoscale MOSFETs. As we

shall show, quantum confinement increases the threshold voltage by up to 290 mV for the 25 nm channel length

device.

A description of the model and of the numerical methods is presented in Section II. In Section III we present

a discussion on the extraction of the threshold voltage and results on the threshold voltage shift due to quantum

confinement. In the same section we discuss the effects of a discrete distribution of impurities on the threshold

voltage, based on the simulation of a large number of devices with different atomistic doping profile. Conclusions

are given in Section IV.

II. MODEL

The potential profile in the three-dimensional simulation domain shown in Fig. 1 obeys the Poisson equation

∇ [ε("r)∇φ("r)]

= −q
[

p("r) − n("r) + N+
D ("r) − N−

A ("r)
]

, (1)

where φ is the electrostatic potential, ε is the dielectric constant, p and n are the hole and electron densities,

respectively, N+
D is the concentration of ionized donors and N−

A is the concentration of ionized acceptors. Hole,

acceptor and donor densities are computed in the whole domain with the semiclassical approximation, while the

electron concentration in strongly confined regions is computed by solving the Schrödinger equation with density

functional theory, with local density approximation11 . In order to reduce computational requirements, the density

of states is written as a sum of two dimensional subbands, obtained by solving the one-dimensional Schrödinger

equation in the direction perpendicular to the Si/SiO2 interface, for each grid point in the horizontal plane. The

derivation of this approximation and an evaluation of the error can be found in12 . The related error on the eigenvalues

is always smaller 0.1%.

The Poisson/Schrödinger equation is solved self-consistently with the Newton-Raphson scheme with a predic-

tor/corrector algorithm close to that proposed in13 . In particular, to simplify the Jacobian and to achieve faster

convergence, the Schrödinger equation is solved at the beginning of the Newton-Raphson cycle : the eigenfunctions

are considered constant within the cycle, while eigenvalues are varied by a quantity equal to q(φ − φ̃), where φ̃

is the potential used to solve the Schrödinger equation and φ is the potential at the current iteration. The electron

density then becomes
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n(x) =
2kBTmt

πh̄2

×
∑

i

|ψli|2 ln[1 + exp(
EF − Eli + q(φ̃ − φ)

kBT
)]

+
4kBT

√
mlmt

πh̄2

×
∑

i

|ψti|2 ln[1 + exp(
EF − Eti + q(φ̃ − φ)

kBT
)] (2)

where anisotropy of the mass is considered and ψli, Eli, ψti and Eti are the eigenfunctions and eigenvalues obtained

from the one-dimensional Schrödinger equation using the longitudinal effective mass ml and the transverse effective

mass mt, respectively. The algorithm is then repeated cyclically until the two-norm of φ − φ̃ is smaller than a

predetermined value.

III. RESULTS AND DISCUSSION

The structure considered in the simulations is depicted in Fig. 1 and the doping profiles of the “Well tempered”

MOSFETs suggested by D.Antoniadis10 are shown in Fig. 2 for the 25 and 50 nm channel length devices.

Source and drain doping profiles are gaussian, while a super halo doping is implanted in the channel in order

to reduce charge sharing effects. In all the performed simulations gate tunneling current has not been considered,

since we have verified that is negligeble as compared to the obtained drain-to-source current values.

A. Threshold voltage computation

In order to reduce the time required to perform a statistical simulation, we need to choose a convenient way to

extract the threshold voltage VT , without computing the complete I-V characteristic for each device.

One method to extract the threshold voltage is to compute the conductance g0, which has the following approx-

imate expression

g0 ≡
∂ID

∂VDS

∣

∣

∣

∣

VDS=0

≈ µn
W

L
Cox(VGS − VT ) (3)

where µn is the electron mobility in the channel, Cox is the oxide capacitance per unit area, W and L are the

channel width and length, respectively, while VGS and VDS are the gate and the drain-to-source voltage.

VT can be then obtained as the intercept of the curve g0-VGS in the strong inversion region with the VGS axis.

The conductance is computed by solving a simplified continuity equation14 . In particular the current density can

be expressed as

"Jn = −qnµn∇φn (4)

where µn is the electron mobility and φn is the quasi fermi level for the electrons. If we now suppose to work at

quasi equilibrium, (4) becomes,

"Jn = −qn0µn∇φn (5)
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where n0 is the charge density computed for drain-to-source voltage equal to zero.

Considering a constant electron mobility and a null generation-recombination term, the continuity equation for

the electrons reads,

∇ · Jn = 0 (6)

and substituting (5) in (6) we obtain

∇ · (n0∇φ) = 0 (7)

The boundary condition for Eq. (7) are shown in Fig. 3 for a region of the MOSFET containing the channel. A

small voltage ∆φ is applied between the source and the drain, while a zero current density is fixed through lateral

faces of the region, imposing the gradient of the quasi Fermi level in the direction perpendicular to the surface

equal to zero.

Another method is to derive the threshold voltage directly from the transfer characteristics, extracting the

intersection of the line approximating the drain current as a function of the gate voltage at fixed VDS . To this

purpose, we have used a model widely explained in our previous work15 , that describes the device behavior out

of the equilibrium, considering fully ballistic transport in the channel (Fig. 4). Compared to the previous one, this

approach is able to take into account drain-induced barrier lowering, but, on the other hand, has a much larger

computational cost. We have indeed verified that the slope of g0 as a function of VGS does not depend on the

particular impurity distribution, so that VT can be obtained by computing g0 for a single VGS
16 .

This definition of VT , however, can give a different value compared to other commonly used definitions2 .

Nevertheless, we believe that our evaluation of the VT -shift due to quantum confinement is quantitatively accurate.

B. Threshold voltage dispersion

In nanoscale MOSFETs, the number of ionized impurities in the depletion region is of the order of hundreds. The

threshold voltage is consequently very sensitive to intrinsic dopant fluctuations. For an accurate quantitative study

of MOSFET behavior is therefore necessary to take into account this effect together with quantum confinement in

the channel.

We have assumed that implanted ions in the channel obey the Poisson distribution. In particular, for each grid

point we have considered the associated volume element and multiplied its volume ∆V by the nominal doping

concentration. Then, a random number N ′ has been extracted with Poisson distribution and divided by ∆V in

order to have the “actual” doping concentration in the volume element. The standard deviation of VT has been then

obtained by simulating a large number of devices with the same nominal doping, but with different actual dopant

distribution. Fig. 5 shows the distribution of threshold voltage computed on an ensemble of 100 nominally identical

devices, where VTQnom
is the quantum computed threshold voltage in case of nominal doping, while in Tab. I the

standard deviations of the threshold voltage σV T are shown.

The considered number of simulated devices is a good compromise between precision and computational burden.

Indeed the standard deviation of the error on σV T is about 7%, which is still accurate.
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In Tab. 1, the first column represents the threshold voltage shift in case of nominal doping due to quantum effects :

VTsc
and VTQ

are the threshold voltage computed with semiclassical and quantum models, respectively. σsc and σQ

are the corresponding standard deviations respectively, while σs and σi are the standard deviation computed with

the analytical model described in3 using respectively the one-dimensional doping profile extracted in the middle of

the channel and the one-dimensional profile derived from the average integration of the three-dimensional profile

over the y − z plane.

As it can be noted, the standard deviation computed by means of quantum model is larger than the one computed

semiclassically since the threshold voltage standard deviation is a rising monotonic function of the oxide thickness,

and quantum confinement effects produce an increase of the effective oxide thickness itself. Moreover, analytical

models2 largely underestimate the standard deviation, since do not consider the charge sharing effect that are relevant

at these geometries.

For the two structures, we have also computed the threshold voltage standard deviation as a function of the

doping concentration (Fig. 6). In particular we have multiplied the doping profile for a factor and then we have

computed the standard deviation as explained above.

The slopes of the least mean square fitting lines differ from that computed using the mono-dimensional analytical

model and equal to 0.25 as described in2,3 and4 . Extracting the 1D doping profile in the middle of the channel, the

analytical simulations have yielded slopes equal to 0.262 and 0.247 for the devices with channel length equal to 25

and 50 nm respectively. Indeed in our three-dimensional simulator, charge sharing effects are taken into account as

well as quantum confinement.

In Fig. 7 is shown the mean value of the threshold voltage variation (∆VT = VTQ
−VTQnom

) as a function of the

doping factor : as expected theoretically2 it decreases for increasing doping factor. Just to investigate the influence

of dopant position on the threshold voltage, we have computed for each randomly generated dopant profile and for

the 25 nm case, the term M , defined as

M =

∫ Wd

0

dx

∫ W

0

dy

∫ L
2

−
L
2

dz

(

1 −
x

Wd

)

NA(x, y, z), (8)

where Wd is the depletion region length.

In Fig. 8 the scatter plot of M vs VTQ
for each sample is shown. As can be seen, the correlation is about 0.601,

that is quite far from 0.964 found in 17 in case of constant bulk doping.

Indeed (8) not only confers a larger weight to shallower impurities, but also tacitly assumes that only the position

of impurities along x affects threshold voltage dispersion. The scatter plot suggests that in the case of three-

dimensional doping profile also the position of impurities on the y − z plane is relevant : this will require further

investigation.

IV. CONCLUSION

We have developed a three-dimensional Poisson/Schrödinger solver and we have performed a statistical simulation

of two nanoscale “Well tempered” MOSFETs.
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Our code has allowed us to take into account simultaneously the effects on threshold voltage of the random

distribution of dopants and of quantum confinement in the channel.

We have shown that an accurate evolution of the dispersion of threshold voltage requires quantum confinement

to be properly taken into account.

Geometrical dispersion can be another source of threshold voltage fluctuations. The dispersion of VT for devices

with channel length below 30 nm due to oxide fluctuations is comparable to that due to random discrete dopants, as

shown in18 . However geometrical and random dopants fluctuations are independent, so a separate study is justified.
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Fig. 1. Three-dimensional structure of the simulated MOSFETs.

Fig. 2. Contour plot of the difference between donor and acceptor concentrations for MOSFETs with channel length of 25 and 50 nm. The

profiles are symmetric so only the halves are shown. Units are cm−3.

Fig. 3. Region considered for the calculation of conductance and associated boundary conditions

Fig. 4. Conductance vs VGS for VDS=0 V and transfer characteristics for VDS =10 mV.

Fig. 5. Threshold voltage distribution in the two simulated devices : (L=25 nm and L=50 nm).

Fig. 6. Threshold voltage standard deviation as a function of the multiplying factor of the doping profile.

Fig. 7. Mean value of the threshold voltage variation (∆VT ) as a function of the multiplying factor of the doping profile.

Fig. 8. Scatter plot of M vs VT for the L=25 nm device for 100 devices, and least mean square fitting line. The correlation coefficient is

0.601.

TABLE I

VTQ
AND VTsc ARE THE QUANTUM AND SEMICLASSICAL THRESHOLD VOLTAGE, σsc AND σQ ARE THE CORRESPONDING STANDARD

DEVIATIONS, RESPECTIVELY. σs AND AND σi ARE THE STANDARD DEVIATIONS COMPUTED AS IN4 USING THE 1D DOPING PROFILE IN THE

MIDDLE OF THE CHANNEL AND THE AVERAGE 1D PROFILE IN THE y − z PLANE.
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Channel length VTQ
-VTsc σs(mv) σi(mv) σsc (mv) σQ (mV)

σQ

VTQnom

(%)

L (nm) (mV)

25 287 32 33 58.57 69.8 7.56

50 219 14 14.9 32.43 35.9 6.81

Table 1

G. Fiori, G. Iannaccone

Three-dimensional simulations of

quantum confinement and random

dopants effects in nanoscale

nMOSFETs
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