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Analytical Model of Nanowire FETs in a Partially
Ballistic or Dissipative Transport Regime

Paolo Michetti, Giorgio Mugnaini, and Giuseppe Iannaccone, Member, IEEE

Abstract—The intermediate transport regime in nanoscale tran-
sistors between the fully ballistic case and the quasi-equilibrium
case, described by the drift-diffusion (DD) model, is still an open
modeling issue. Analytical approaches to the problem have been
proposed, based on the introduction of a backscattering coeffi-
cient, or numerical approaches consisting in the Monte Carlo so-
lution of the Boltzmann transport equation or in the introduction
of dissipation in quantum transport descriptions. In this paper,
we propose a simple analytical model to seamlessly cover the
whole range of transport regimes in generic quasi-1-D field-effect
transistors, and apply it to silicon nanowire transistors. The model
is based on describing a generic transistor as a chain of ballistic
nanowire transistors in series, or as the series of a ballistic tran-
sistor and a DD transistor operating in the triode region. As an
additional result, we find a relation between the mobility and the
mean free path that has deep consequences on the understanding
of transport in nanoscale devices.

Index Terms—Ballistic transport, compact model, drift-
diffusion (DD) transport, nanowire transistors, quantum wires,
1-D transistors.

I. INTRODUCTION

MULTIPLE gate architectures such as gate-all-around
(GAA) MOSFETs have lately attracted significant in-

terest [1]–[3], and have emerged as promising options to
keep short channel effects under control, exhibiting quasi-
ideal subthreshold swing with undoped channels. This has the
very important consequence of alleviating intrinsic variability
of transistor threshold voltage, which in planar MOSFETs is
mainly due to channel doping.

Nanowire FETs are a particular case of multiple gate FETs,
in which quantum confinement occurs in the transverse cross
section of only few nanometers. Nanowire FETs are basically
quasi-1-D transistors, where transport occurs in a set of loosely
coupled propagating modes.

From the point of view of modeling, several papers have
appeared in the literature addressing transport and quan-
tum confinement in silicon nanowire transistors (SNWTs). In
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pioneering works [4]–[7], the effects of quantum confinement
on a silicon nanowire were discussed. Numerical detailed
investigations of quantum confinement in silicon and silicon
germanium nanowires with the anisotropic effective mass ap-
proximation, and its effect in lifting the degeneracy of silicon
conduction band minima were discussed in [8] and [9]. The
electrostatics of silicon nanowire devices with cylindrical sym-
metry has been investigated through a perturbative approach to
the Schrödinger equation [10] or with a self-consistent solu-
tion in Poisson–Schrödinger equation with cylindrical coordi-
nates [11].

Analytical models of ballistic nanowire transistors have been
proposed in [12]–[14] and a broad review can be found in [15].
In real nanowire devices, currents are much lower than those
predicted by ballistic models [2], which can only be used as an
asymptotic performance limit.

Nonballistic transport in quasi-1-D channels is harder to
model. As far as numerical studies are concerned, far-from-
equilibrium transport in SNWTs was investigated in [16] within
the nonequilibrium Green’s functions formalism, for both
ballistic and dissipative transport, using the Büttiker probes
approach to model inelastic scattering. A subband-based drift-
diffusion (DD) simulation, in which the 3-D electrostatics is
solved self-consistently with the 2-D Schrödinger equation in
each transverse cross section and a set of 1-D continuity equa-
tions based on the DD description, has been proposed in [17].

As far as analytical models of dissipative transport in quasi-
1-D FETs are concerned, notable examples are [13], which
proposed a semiclassical model with DD transport and constant
mobility inside a cylindrical MOSFET, and [18], in which a
polynomial expansion of the Fermi integrals for the mobile
charge is used.

Specific scattering mechanisms such as phonon scatter-
ing have been numerically addressed within the nonequilib-
rium Green’s functions approach by Jin et al. [19] and by
Gilbert et al. [20], [21].

We believe that it would be very interesting to have an
analytical model capable to seamlessly cover the continuum of
transport regimes between the limits of ballistic transport and
DD (i.e., quasi-equilibrium) transport. Such a model, theoreti-
cally derived from the formalism of Büttiker virtual probes [22],
and consisting in either a chain of ballistic transistors or in the
series of a fully ballistic and an ideal DD transistor, has been
proposed in [23] and [24] for 2-D MOSFETs.

On the basis of this paper, we present an analytical model
capable of describing the complete range of transport regimes
in quasi-1-D FETs, from fully ballistic to long channel quasi-
equilibrium DD behavior. A preliminary attempt has been

0018-9383/$25.00 © 2009 IEEE
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Fig. 1. Schematic band diagram of a 1-D SNWT. Vg is the gate Fermi
potential, φm is the gate workfunction, χ is the channel electron affinity, φc

is the potential in the centroid layer. qεα are the eigenvalues of the vertical
confinement, drawn out of scale.

proposed in [25]. As we shall show, the model is sufficiently
simple to be suitable for circuit-level simulations and provides
a strong intuitive picture of the transition from ballistic to DD
transport, which is missing in other descriptions of partially
ballistic transport such as those relying on the introduction of a
backscattering coefficient [26], [27].

This paper is organized as follows: In Section II, we set up
a model for ballistic transport in a nanowire transistor that, in
Section III, we apply to the case of a chain of ballistic transis-
tors. With a linearization procedure, we show that a sufficiently
long chain of ballistic transistors, can be regarded as a DD
channel. However, the same approach fails for short ballistic
chains, in which transport has an intermediate nature between
ballistic and DD. This difficulty is tackled in Section IV, where
we present a compact model for intermediate transport that
treats the ballistic chain as a series of one DD section, for the
first N − 1 transistors, and the remaining one ballistic channel,
in which the nonequilibrium character of the intermediate trans-
port manifests itself. In Section V, we introduce the cylindrical
and rectangular confinements for silicon nanowires considered
in this paper, and in Section VI, we compare the results of our
DD and intermediate transport compact models with the numer-
ical solution of the transport through ballistic chains of different
length. In the section, we also give an estimation of the current
ballisticity ratio as a function of the transistor chain length.

II. BALLISTIC TRANSPORT

In the following discussion, we describe our approach in the
general situation of a n-FET with a quasi-1-D channel, with
the effective mass approximation. Indeed, the subband energies
are determined by the transverse confinement, and to explicitly
account for the capacitive coupling between gate and channel,
the contact geometry has to be taken in account. The bottom of
the 1-D conduction subbands are formally defined as the sum
qεα − qφc, of the eigenstates of the vertical confinement with
respect to the conduction band edge in the centroid layer (qεα)
and of the electrostatic potential energy (−qφc) in the centroid
layer that is where one can think all charge localized, following
the approach of [28] and [23] (Fig. 1). For simplicity, α denotes

Fig. 2. Schematic capacitance diagram for a wire with square and circular
cross section, representing the series of the oxide capacitance Cox and the
silicon capacitance Cd. In the square shape, the interface between the silicon
and the insulator is considered approximately isopotential, and the mobile
charge layer (the centroid zI ) is approximated with a square contour. The
table summarizes the geometrical parameters used in the simulation of the
rectangular wire (R) and cylindrical one (C).

the set of the quantum numbers specifying the confinement.
The dimensionality also modifies the Fermi–Dirac integrals
Fν−1/2 and Fv entering the ballistic equations for the mobile
charge and the current in the channel, respectively. In particular,
for a 1-D conductor, in effective mass approximation, v = 0,
whereas for a 2-D MOSFET v = 1/2 [24]. A definition for the
Fermi integrals, with v > −1, is

Fv(η) =
1

Γ(v + 1)

∞∫

0

xv

ex−η + 1
dx (1)

with Γ being the Gamma function, acting as a normalizing
factor for the Fermi integrals. For v ≤ −1, we can rely to their
property (d/dη)Fv(η) = Fv−1(η) for their definition [29].

We start from a generic multisubband degenerate version of
the ballistic model in [24]. The vertical electrostatic model we
propose is similar to that in [12] and [13]; it is also somewhat
less sophisticated, because we will suppose that screening can
be considered constant. This is done in view of obtaining an
analytical model of intermediate transport. We note that this
assumption is sound enough for small cross-sectional channels
and low electron densities [30]. Indeed, in the inverse layer
centroid approach, we consider the charge accumulated in the
centroid layer and its geometrical screening is included in the
effective gate capacitance as a series contribution Cd, therefore
the effective gate oxide capacitance for unit length is given by

Cg =
(

1
Cox

+
1

Cd

)−1

(2)

as shown in Fig. 2, where the expression Cox depends on the
geometry.

If we suppose an undoped channel, consistently with Fig. 1,
the linear density of mobile charge on the peak of the potential
barrier in the channel is given by

Qm = −Cg [Vg − (φm − χ)/q − φc] (3)

where φc is the electrostatic potential in the centroid layer,
(φm − χ)/q is the flatband potential, given by the difference
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between the gate workfunction φm and the channel electron
affinity χ.

In the case of ballistic transport, there is no local equilibrium
so that no quasi-Fermi level can be locally defined, because two
different carrier populations exist, originating from source and
drain, which can be considered at equilibrium with the injecting
electrodes, as discussed in [31]. These two populations are
separated by the peak of the barrier in the channel that controls
transport. Therefore, only three points are important: source,
drain, and the peak of the electrostatic potential. In ballistic
transport, carriers move without inelastic scattering along the
channel and therefore at the subband peak the carriers that
propagate toward the drain (“forward states”) only come from
the source, whereas the carriers propagating toward the source
(“reverse” states) come from the drain. As a consequence, we
have the superposition of two hemi-Fermi–Dirac distributions.
Following the considerations in [12], we can write for the
ballistic mobile charge linear density on the peak

Qm = −q
∑

α

Nα

[
F−1/2 (ηα

s ) + F−1/2 (ηα
d )

]
(4)

where

Nα = gα

√
kBTmα

2π2!2
Γ

(
1
2

)

is one half of the effective density of states of the αth subbands
multiplied for its degeneration index gα. F−1/2(η) is the Fermi
integral of order −1/2 and

ηα
s = (φc − Vs − εα)/φt

ηα
d = (φc − Vd − εα)/φt. (5)

The Fermi potential at the source (drain) is Vs(d) and φt =
KbT/q is the thermal potential. Equations (3) and (4) have to
be solved simultaneously to obtain φc and Qm.

From the Landauer formula, we can write the current as [12]

Ids = q
∑

α

Gα [F0 (ηα
s ) − F0 (ηα

d )] (6)

where Gα = gα(kbT/π!)Γ(1) is the effective injection rate of
a 1-D channel multiplied by the degeneration gα of the αth
subband. Note that the current is dependent on the channel
potential through ηs and ηd.

III. FROM BALLISTIC TO DD TRANSPORT

We follow the approach developed in [23] and [24] for a 2-D
MOSFET for the nondegenerate and degenerate cases. Here, we
analyze the case of a SNWT where the different dimensionality
leads to different Fermi integrals entering the current and the
charge expressions, and to different electrostatics. Moreover,
we considered a multisubband degenerate model, while in
[24], only a single subband was presented. We obtain also a
correcting factor for the degenerate case, correcting the result of
the linearization process whenever the low field approximation
is not in fully satisfied.

We recall that, within the Büttiker probes approach, inelastic
scattering is thought as localized in special points, spaced by

Fig. 3. (a) Circuit model of a generic SNWT, subject to inelastic scattering,
in terms of a convenient chain of ballistic (B) SNWTs. (b) Approximate
aggregation of the first N − 1 ballistic transistors in an equivalent DD one.
The macromodel DD + B comes out to be a suitable model for a device in
intermediate transport regime.

a length defined as “mean free path” λ. The virtual probes act
as localized reservoirs along the channel, in which carriers are
thermalized in equilibrium with their quasi-Fermi potential
Vk, while transport from one virtual probe to the next is
considered purely ballistic. We have a DD transistor when
the channel length is much longer than the free mean path,
that from our point of view, it is equivalent to have a long
enough chain of ballistic transistors, as rigorously shown in
[23]. On the contrary, when the number of internal contacts is
small, transport is far-from-equilibrium, and is fully ballistic
in the limit N = 1. We remark that within the Büttiker probe
approach, transport of hot electrons is accounted only inside
each ballistic channel, whereas a full thermalization occurs
in correspondence of each probe, where electron density is
described by a single quasi-Fermi level. It would also be
interesting, but out of the scope of this paper, to couple the
transport equation with a heat diffusion equation, accounting
for the energy losses in the Büttiker probes, leading to a
nonuniform temperature distribution in the device.

We define Vk as the quasi-Fermi potential of the kth virtual
probe, and suppose that the kth contact is placed at xk = kλ
with k = 1, . . . , N , where the boundaries are fixed as V0 =
Vs = 0 V and VN = Vd = Vds. That is equivalent to place N
ballistic SNWTs of channel length λ in series, as shown in
Fig. 3. Since the current Ik in any k = 1, . . . , N FET must be
equal to Ids, we have N equations determining the local Fermi
levels

Ik = q
∑

α

Gα

[
F0

(
ηα

k−1

)
− F0 (ηα

k )
]
. (7)

We note that ηα
k = (φ̃k − Vk − εα)/φt, where φ̃k is the elec-

trostatic self-consistent potential in the conduction band peak
of channel k, between the source contact k − 1 and the drain
contact k. Introducing the definition Ṽk ≡ (Vk−1 + Vk)/2, i.e.,
the mean potential between the two contacts (k and k − 1) of
channel k, and making explicit the Fermi integrals, we can
rearrange (7) as follows:

Ik =q
∑

α

Gα

∞∫

0

sinh
(

Vk−Vk−1

2φt

)

2
[
cosh

(
x−η̃α

k

2

)]2
+

[
cosh

(
Vk−Vk−1

2φt

)
−1

]dx

(8)

where η̃α
k = (φ̃k − Ṽk − εα)/φt.
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At this point, in order to build an analytical model, we
consider a large number of contacts and, having in mind that the
current is constant along the channel, we extend Vk to a contin-
uous quasi-Fermi potential V (x) satisfying the conditions

V

(
xk + xk−1

2

)
= Ṽk (9)

dV

dx

(
xk + xk−1

2

)
=

Vk − Vk−1

λ
. (10)

Under the particular hypothesis that every ballistic SNWT
works in the linear region, i.e., that

λ
dV (x)

dx
= Vk − Vk−1 % 2φt (11)

and expanding the terms sinh and cosh to the first order, we can
put (8) in the local form

I =
qλ

φt

dV (x)
dx

∑

α

GαF−1 [ηα(x)] (12)

where the quantities pertain to all point x, as

ηα(x) = [φ(x) − V (x) − εα] /φt. (13)

Evidently, if a voltage Vds is applied to the chain, (11) is
satisfied if Vds % 2φtN . Moreover, within the same approxi-
mations, the vertical electrostatics becomes

Q(x) =
∑

α

Qα(x) = 2q
∑

α

NαF−1/2 [ηα(x)] . (14)

An important aspect of (12) and (14) is that the current Iα in
subband α can be written in terms of the mobile charge density
Qα(x) and of a mobility µα

deg(x) as

Iα(x) = µα
deg(x)Qα(x)

dV (x)
dx

(15)

where the conduction is affected by the 1-D electron gas
degeneracy through the mobility µdeg(x). The mobility is
given by

µα
deg(x) =

vαλ

2φt

F−1 [ηα(x)]
F−1/2 [ηα(x)]

(16)

where vαλ/2φt, to which (16) is reduced in the nondegener-
ate limit, represents the low-field mobility for a 1-D gas of
incoming electrons described by an hemi Maxwell–Boltzmann
statistics [24] occupying the αth subband, whose mean electron
velocity is vα =

√
(2kT/πmα), characterized by a ballistic

motion for paths of length l < λ and a sudden and complete
scattering at l = λ. Considering the mean free path λ as a con-
stant, (16) describes the degradation of carrier mobility due to
degenerate conditions of Fermi–Dirac statistics. An analogous
expression was recognized in a Monte Carlo simulation [32]
for the case of strained silicon FETs. While, in [16] and [27],
a similar, but not identical relation between the mean free path
and the effective mobility has been found.

The current is expressed in a local form in (12), and we can
eliminate the gradient of the local quasi-Fermi level integrating
along the channel and exploiting current continuity, leading to

Ids =
L∫

0

q
λ

φtL

∑

α

GαF−1 [ηα(x)]
dV (x)

dx
dx. (17)

In order to obtain a more compact form of (17), we can
change the integral variable as follows:

L∫

0

qF−1 [η(x)]
dV (x)

dx
dx =

Vd∫

Vs

F−1 [η(V )] dV

=

ηd∫

ηs

F−1(η)
dV

dη
dη (18)

where the term dV/dη is obtained by differentiating (14) in dV
and using the fact that dη/dV = (dφ/dV − 1)/φt. The current
can be obtained with a numerical integration of

Iα
ds =

qλGα

φtL

Vd∫

Vs

F−1 [ηα(V )] dV (19)

where we note that ηα not only explicitly depends on V , but
also implicitly through φc, as shown in (13). Such dependence
has to be taken into account in the self-consistent solution of
the vertical electrostatics.

Finally, we obtain the compact expression (which we will
refer as the DD model) for the source–drain current for each
subband α

Iα
ds =

qλφtGα

φtL

(
[F0 (ηα

s ) − F0 (ηα
d )]

+
∑

β

ρβ

[
F−1,−3/2

(
ηα

s , ηβ
s

)
− F−1,−3/2

(
ηα

d , ηβ
d

)] )
(20)

where, for simplicity, we defined

F−1,−3/2(ηα, ηβ)≡
ηα∫

−∞

F−1(x)F−3/2

(
x+

εβ−εα

φt

)
dx (21)

with ρα = (qNα/Cgφt). It is worth noting that, as observed
also in [23] and [24], in the nondegenerate limit the first term in
(20) reduces to the diffusion term of the EKV model, while in
the degenerate limit, it corresponds to the current of a single
ballistic channel divided by N . The second term of (20) is
instead associated with the drift current.

We note that actually, in the low field approximation, for the
case of a 1-D channel, the integral (8) can be analytically solved
as discussed in Appendix A. However, the use of the analytical
expression leads to the more complex and numerically expen-
sive expression for the DD current (29), while giving only a
slight correction of (19). The model that employs the analytical
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Fig. 4. Discrete quasi-Fermi potential for a chain of N = 5 SNWTs at fixed
Vds = 0.5 V. Fermi level is defined only on the virtual probes placed at points
x = kλ with k = 1, . . . , N . It is evident that the first N − 1 transistors work
approximately in linear regime; while increasing Vg , a nonlinear behavior is
developed on the latter ballistic channel. This fact supports the choice of the
DD + B segmentation in our model for intermediate transport.

solution of (8), with the use of (29), will be referred as DD∗

model. We conclude stressing the fact that DD and DD∗ models,
considered alone, are not appropriate to describe transport
whenever the condition (11) is not satisfied: for example in very
short channels, where intermediate transport is expected.

IV. COMPACT MODEL FOR INTERMEDIATE TRANSPORT

Now, we are interested in the development of a model that
will be effective in the whole range of transport regimes, as
proposed in [23] for the 2-D MOSFET case. It is evident that
in the general case of intermediate transport, the simplifying
hypothesis (11) that enforces each SNWT of the ballistic chain
to operate in the linear region, does not hold, and we can expect
that some elementary channels can work in the saturation
regime, or near it [23]. The behavior of an SNWT operating in
such intermediate transport regime can be obtained by solving
the system for the complete ballistic chain (7), but it can
represent a heavy computational burden, particularly for a large
number of internal nodes. In order to build a simple model
that can be more easily handled, we note in Fig. 4, where we
plotted the quasi-Fermi potential on the virtual probes for a
chain decomposition of an SNWT, that when the saturating
behavior of the elementary ballistic transistor emerges, it is
present mainly on the last ballistic transistor of the chain.
This nonlinear behavior is a general condition for transistors in
intermediate transport regime, due to the fact that in its end the
channel narrows down and therefore, to maintain constant the
current flux along it, a major spacing between the last source
and drain levels is required (or, in the continuous limit, a steep
drop of the quasi-Fermi level). This fact suggests that we can
aggregate the first N − 1 ballistic transistors in an approximate
equivalent DD transistor with ratio L/λ = N − 1 working in
low field conditions, as it is shown in Fig. 3, and similarly to
what was proposed in [23] for MOSFETs. We can therefore see

an SNWT in intermediate regime as the series of a DD channel
for the first N − 1 transistor that we can solve using (19), and
a single ballistic transistor, governed by (6). We only need to
solve the DD + B system, imposing constant current through
the two sections in series and solving the Fermi potential on
the internal node between the DD and the B channels. We point
out that in the DD + B model the ratio L/λ has no need to be
integer, because we apply the continuous DD equation (20).

V. APPLICATION TO GAA-SILICON NANOWIRE

At first, we will consider a silicon wire with square cross
section of side tsi. Concerning the effective gate capacitance,
unfortunately, no simple analytical closed form is available.
In order to simplify the electrostatics, we suppose that the
interface between the oxide and silicon is approximately isopo-
tential, and we consider the variational approximation reported
in [33], where the capacitance per unit length of a rectangular
coaxial line, associated with the oxide layer, is

Cox =
8εox

ln
(

1 + 2tox
tsi

) (22)

and similarly the capacitance associated with the charge in the
silicon body Cd is

Cd =
8πεsi

ln
(

tsi
2zI

) . (23)

The use of Cd, with zI adequately chosen, permits to treat
the capacitance due to the charge distribution in the channel
cross section, in series with the oxide capacitance Cox. The term
zI is a characteristic radius of the closed line where we can
effectively localize the whole mobile charge. Here, it is used as
a fitting parameter for simplicity, while it is actually dependent,
due to volume inversion, on the charge density in the channel.
We point out, although, that it is smoothly varying for small
section nanowires and low electron density [30].

In case of rectangular quantum confinement, the eigenval-
ues of the Schrödinger equation can be considered for sim-
plicity [12]

qεν
nx,ny

=
!2π2

2

[
n2

x

mν
xt2si

+
n2

y

mν
yt2si

]
(24)

where the mass tensor can be defined as

ν mν
x mν

y mν
z

1 mt ml mt

2 ml mt mt

3 mt mt ml

ml and mt are the longitudinal and transverse components of
the effective mass tensor of the degenerate minima of the con-
duction bands in Si. We can write the effective mass, character-
izing the motion in the unconfined direction (z), as mα = mν

z

for a (100) silicon wire, with ν running on the different Si
conduction band minima.
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Fig. 5. Comparison between NANOTCAD 2-D simulation and the compact
model calculation of the vertical electrostatic for the R and C SNWTs. The
centroid potential obtained with (solid line) NANOTCAD 2-D and the centroid
potential obtained with the (dotted) compact model are reported. The compact
model well accounts for the centroid potential, point in which the charge of the
channel can thought to be concentrated.

In the case of cylindrical quantum confinement, for the gate
capacitance, we have instead

Cox =
2πεox

ln
(

1 + 2tox
tsi

) (25)

Cd =
2πεsi

ln
(

tsi
2zI

) . (26)

Considering cylindrical quantum confinement [12], we have
that the subband separation from the bottom of the conduction
band is described by the approximated and handy expression

qεν
n1,n2

' !2π2

2
√

mν
xmν

yR2

(
n1 + |n2|−

1
4

)2

(27)

where n1 is the radial quantum number, n2 the azimuthal
quantum number, and ν runs on the different silicon valleys.

We applied our model to a cylindrical quantum wire and
a rectangular SNWT, denominated C, R, respectively. Their
geometries are shown in Fig. 2. The inversion centroid layer
depth was fixed in comparison with the 2-D Schrödinger–
Poisson simulator NANOTCAD [34], as shown in Fig. 5. We
note that a careful choice of zI permits to recover the inverse
layer centroid potential in full agreement with the NANOTCAD
simulator, correctly accounting, thus, for the screening due to
the charge inside the channel as a function of the gate potential.

VI. RESULTS

For a short channel transistor with length of few mean free
paths, transport is quasi-ballistic, and we have seen that the
DD model (19) fails to describe its behavior. On the other
hand, it is well known that the transport regime of a transistor
with channel length much longer than the free mean path is
described by the DD model. We want to check if our model is
able to correctly reproduce such transition and to investigate

Fig. 6. Output characteristics for a chain of N ballistic cylindrical C SNWTs
(denoted by NB), for N = 10, 20, 30, compared with results of the DD model
with λ = L/N . The gate potential value is Vg = 0.8 V. As the number of
ballistic transistors in series increases, the DD approximation become more and
more able to capture the behavior of the device.

the number of free mean paths after which transport can be
definitely associated to the DD regime. In Fig. 6, we plot
the output characteristics for a chain of N ballistic channels
numerically calculated (denoted NB) and with the DD ap-
proximation (DD characteristics), for N = 10, 20, 30 and gate
potential Vg = 0.8 V. We note that for an SNWT of length
smaller than 10 λ, a DD description is not appropriate. With
increasing N , the difference between the NB and DD models
is reduced, and for a channel of length > 20λ, the output
characteristics calculated with the DD model fully reproduce
the corresponding numerically evaluated NBs.

We have calculated the output characteristics of SWNTs
described in the latter section employing a direct numerical
solution of the chain of N ballistic transistors (NB), and
compared them with our models for intermediate transport
DD + B and DD∗ + B. Figs. 7 and 8, respectively, show the
output characteristics for the C SWNT with N = L/λ = 5, and
for the rectangular SWNT with N = 2. Similar considerations
apply to the two figures. While the DD approximated equation,
derived from the linearization of the NB chain, inadequately
reproduces the saturation behavior of the NB characteristics,
the DD + B model seems suitable to describe SNWTs in the
intermediate transport regime. As shown in Figs. 7 and 8,
the DD + B and DD∗ + B models are really able to capture
the nonlinear behavior of the NB transistors, although a non-
negligible error remains in the saturation regime. This is due to
the weakly nonlinear transport in the DD section that has been
neglected. We note that, in general, the DD∗ + B improves the
agreement with the ballistic chain characteristics.

After testing our model with rectangular and cylindrical
nanowire geometries, changing both the oxide and silicon
length tox, tsi and with different values of N , we can conclude
that the DD + B and DD∗ + B compact model quite well
reproduces the output characteristics of degenerate SWNTs for
any N , with errors in the saturation zone of few percentage
points.

In Fig. 9, the transfer characteristics of a C SNWT, treated as
a chain of N elementary ballistic channels, with Vds = 0.5 V,
is presented. Both the DD + B and the DD∗ + B models well

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on July 3, 2009 at 08:42 from IEEE Xplore.  Restrictions apply.



1408 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 56, NO. 7, JULY 2009

Fig. 7. Output characteristics of a C SNWT modeled as a chain of N = 5
elementary transistors: 5B corresponds to the exact numerical evaluation. The
DD + B compact model is obtained considering the series of a DD channel
governed by (20) plus a ballistic one and the DD∗ + B is analogous but uses
(29) for the DD section. The choices of the gate potential are Vg = 0.2, 0.4,
0.6, and 0.8 V.

Fig. 8. Output characteristics of the R SNWT modeled as a chain of N = 2
elementary transistors: exact numerical evaluation (2B), compact model
DD + B with a DD plus a ballistic channels and DD∗ + B analogous to the
latter except for the use of (29) in the DD section. The choices of the gate
potential are Vg = 0.2, 0.4, 0.6, and 0.8 V.

Fig. 9. Transcharacteristic curves for a chain of N ballistic C SNWTs, with N
ranging from 1 to 10 and Vds = 0.5 V. The exact numerical evaluation (NB),
and the results of the DD + B and DD∗ + B compact models are shown.

Fig. 10. Ballisticity index of a NB chain as a function of N for the R, C
SNWTs, and a MOSFET (see text for details). The gate potential is Vg = 0.8 V,
and the drain-source potential is Vds = 0.5 V.

reproduce the behavior of the corresponding ballistic chain in
all gate voltage regimes, for all values of N . We note that
the DD∗ + B model is always more accurate, in particular the
correction is more evident for transistor with few nodes, at large
gate voltage.

We investigated also the so-called ballisticity index of a
transistor [35] that is given by the current ratio I/Ib, between
the current of the transistor and that of a corresponding ballistic
one. The results of its calculation for a NB chain, with N
ranging from 1 to 20, are shown in Fig. 10, where we considered
the R, C SNWTs and also, for comparison an undoped Double
Gate MOSFET with tsi = 4 nm, tox = 2 nm. The ballisticity
index is monotonous and slowly decaying with N , the behavior
is similar for all the transistors considered here. The curves
can be easily fitted with the function 1/[1 + r(N − 1)], where
N is the number of ballistic elements and r ≈ 0.25. We note
that initially the ballisticity index steeply decreases with N .
For longer channels, the current becomes slowly varying with
N : sliding from N = 10 to N = 20 the current only decreases
from the 30% to the 20% of the ideal ballistic one.

Having in mind a compact model, the calculation of equa-
tions (20) or (19) for the DD + B model are still computa-
tionally expensive. Therefore, we also tested the approximation
of the integral in the DD section (DD) with its symmetrical
linearization [36], as discussed in Appendix B.

VII. CONCLUSION

We have presented a physics-based analytical model able
to describe quasi-1-D field-effect transistors in the complete
range of transport regimes extending from the fully ballistic
case captured by the Natori model to the quasi-equilibrium case
captured by the DD description. Our proposed model sees a
generic transistor as a long enough chain of elementary ballistic
transistors in series with a common gate. Based on the Büttiker
probes description of inelastic scattering, we have rigorously
proved that the model reduces to the limit cases. In addition, as
the most important result in this paper, we have shown that an
equally adequate model, much simpler from the computational
point of view, and more physically intuitive, is represented by

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on July 3, 2009 at 08:42 from IEEE Xplore.  Restrictions apply.



MICHETTI et al.: ANALYTICAL MODEL OF NANOWIRE FETs IN A TRANSPORT REGIME 1409

the series of an appropriate DD 1-D transistor and a ballistic
1-D transistor, consistently with the results in [23] and [24]
that apply to 2-DEG FETs. We have focused in this paper
on SNWTs, but our model is applicable without significant
variations to any type of quasi-1-D FET, such as those based
on carbon nanotubes, graphene nanoribbons, or other channel
materials.

Finally, we have shown that an interesting consequence of
our model is that, if a uniformly spaced chain is assumed, the
Fermi–Dirac statistics degrades the low-field mobility, consis-
tently with the observations in [32].

APPENDIX A
ANALYTICAL SOLUTION OF THE DD INTEGRAL

We note that in the integral

∞∫

0

1

2
[
cosh

(
x−η̃α

2

)]2
+

[
cosh

(
Vk−Vk−1

2φt

)
− 1

]dx

in (8) has an analytical solution given by

I(η̃) =
1√

a(a + 1)

×
{

tanh−1

[√
a

a + 1

]
+ tanh−1

[√
a

a + 1
tanh

(
η̃α

2

)]}

where a = [cosh((Vk − Vk−1/2φt)) − 1]/2. We replace the
Fermi level difference between neighbor probes, by its mean
value on the linearized chain

Vk − Vk−1 ≈ γ = ∆V (DD)/(2φtN)

where ∆V (DD) is the total potential drop in the DD section and
N the number of elementary channels in it.

In the low-field approximation, we also replaced the
sinh((Vk − Vk−1/2φt)) with its arguments: We try to amend
this by including a correction factor obtained by the ratio of the
not-approximate term over approximate one

sinh
(

Vk − Vk−1

2φt

)/
Vk − Vk−1

2φt
. (28)

In the end, we reach a more accurate version of (19) for the
DD section, given by the following expression:

Iα =
qλGα

φtL

sinh(γ)
γ
√

a(a + 1)

Vd∫

Vs

I[V ]dV. (29)

APPENDIX B
SYMMETRICAL LINEARIZATION OF THE

DD INTEGRAL IN SNWT

The integral for the DD current (19) is computationally ex-
pensive for a compact model to be included in circuit simulators
such as SPICE. Therefore, we adopt a variant of the symmetri-

Fig. 11. Characteristic curves calculated for a R SNWT with N = 5. The
results of the direct numerical calculation 5B, of the DD + B compact
model and of the same compact model, employing symmetrical linearization
DDlin + B, discussed in the text, are shown. The curves are calculated for gate
potential values of Vg = 0.2, 0.4, 0.6, and 0.8 V.

cal linearization [36], [37] in order to obtain an approximated
result

I =
Vd∫

Vs

q
∑

α

GαF−1

(
φc−V −εα

φt

)
dV

dx

λ

L
dx

=

φcd∫

φcs

q
∑

α

GαF−1

(
φc−V −εα

φt

)
dV

dφc

λ

L
dφc

' q
∑

α

GαF−1

(
φc,m−V −εα

φt

)(
dV

dφc

)

m

λ

L
[φcd−φcs]

' q
λ

L

∑

α

GαF−1

(
φc,m−V −εα

φt

)
[φcd−φcs]nq

where we have defined the “quantum slope factor”

nq ≡ 1 +
1

q
∑

α ραF− 3
2

(
φc,m−Vc,m−εα

φt

) (30)

that is a constant in the considered case. The linearization is
done around

φc,m =
φcs + φcd

2
(31)

where φcs and φcd can be obtained solving the vertical electro-
statics (14). Moreover, from vertical electrostatics we find Vc,m

with an iterative process. We can observe in Fig. 11 that the
symmetrical linearization of the DD integral well reproduce the
not-approximated results.
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