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We report the results of an analysis, based on a straightforward quantum-mechanical model, of shot noise
suppression in a structure containing cascaded tunneling barriers. Our results exhibit a behavior that is in sharp
contrast with existing semiclassical models for this particular type of structure, which predict a limit of 1/3 for
the Fano factor as the number of barriers is increased. The origin of this discrepancy is investigated and
attributed to the presence of localization on the length scale of the mean free path, as a consequence of the
strictly one-dimensional !1D" nature of disorder, which does not create mode mixing, while no localization
appears in common semiclassical models. We expect localization to be indeed present in practical situations
with prevalent 1D disorder, and the existing experimental evidence appears to be consistent with such a
prediction.
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In the study of low-dimensional devices, suppression of
shot noise with respect to the value predicted !for the case of
a Poissonian noise process" by Schottky’s theorem has rep-
resented one of the most active fields of investigation in the
last two decades. Such a suppression phenomenon, described
by means of the Fano factor, i.e., the ratio of the actual shot
noise power spectral density to the full value 2q#I# !where q
is the value of the elementary charge and I is the average
value of the current flowing through the device", has been
predicted and observed in many different mesoscopic struc-
tures and is the result of the presence of correlations between
charge carriers, which reduce current fluctuations in the de-
vice. From the theoretical point of view, shot noise suppres-
sion has been investigated both with quantum-mechanical
and with semiclassical approaches. Such activities have led
to the discovery of “universal” values for the Fano factor in
specific structures; in particular, for disordered conductors a
universal suppression factor of 1/3 has been found both with
random matrix theory1,2 and with a semiclassical approach.3
This result has received further confirmation from numerical
simulations4,5 and from experimental evidence.6

A remarkable addition to these results is a derivation by
de Jong and Beenakker,7,8 who demonstrated that a Fano
factor of 1/3 is obtained, within a semiclassical model based
on the Boltzmann-Langevin equation, also for a series of
barriers. A formulation relying on an equivalent semiclassi-
cal circuit model !similar to that used in Ref. 9 for a series of
chaotic cavities" leads to the same result.

However, the only existing experimental data,10 obtained
for a GaAs/AlGaAs superlattice, are not in agreement with
these semiclassical conclusions: they exhibit a Fano factor
that depends strongly on barrier transmission in the limit of
vanishing applied electric field.

Prompted by this discrepancy, we have performed a quan-
tum calculation of shot noise suppression for a structure con-
sisting of cascaded barriers. While for a conductor with two-
dimensional !2D" or three-dimensional !3D" disorder
quantum simulations recover4,5 exactly the same 1/3 suppres-
sion predicted by random matrix theory and by semiclassical
models, this is not the case in the presence of one-
dimensional !1D" disorder, i.e., of randomly spaced cascaded
barriers, regardless of the dimensionality of the conductor.

Our quantum calculations although performed for a model
system do, instead, exhibit a behavior consistent with the
experimental data.

In this Rapid Communication, we focus on the reasons for
the discrepancies between the semiclassical and the quantum
approaches and address the issue of what model best repre-
sents the situation of a practical experiment. The structure we
have considered !a series of cascaded barriers, sketched in
the inset of Fig. 1 and corresponding to that of Refs. 7 and 8"
can be studied very straightforwardly from a numerical point
of view. For each fixed value of the longitudinal coordinate
x, the potential profile is constant for 0"y"W !y is the
transverse coordinate, and W is the width of the structure:
8 #m in these calculations", while we assume a hard-wall
confinement for y=0 and y=W. Thus, the orthonormal set of
transverse modes is the same all over the structure, and the
tunnel barriers do not introduce any mode mixing. Since the
modes are uncoupled, the numerical analysis can be split into
a set of one-dimensional problems, one for each considered
mode. For the generic nth mode, the S matrices of an inter-
barrier region of length L and of a tunnel barrier of height U
and length l are

Γ=0.9

Γ=0.5

=0.1Γ

1 2 3 4 5 6 8 9 107
Number of barriers

0.8

0.6

0.4

0.2

0

1

Fa
no

fa
ct

or

FIG. 1. Fano factor for a series of identical barriers, as a func-
tion of the number of barriers for the case of realistic barriers !solid
lines", and for model barriers with a transparency independent of
the longitudinal electron wave vector !dashed lines". Inset: sketch of
the analyzed structure.
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For each mode, the scattering matrices of adjacent slices

are recursively composed to find the overall S matrix and in
particular one of its elements, the transmission tn of the nth
mode through the device. The conductance and the shot
noise power spectral density are then computed using the
relations11,12

G =
2q2

h )
n

Tn, SI = 4
q3

h
#V#)

n
Tn!1 − Tn" , !3"

where the sums are performed over all the N modes propa-
gating in the interbarrier regions, Tn= #tn#2 and V is the exter-
nally applied voltage. Therefore the Fano factor ( can be
computed as
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Before computing the ratio, the values of the numerator and
of the denominator are uniformly averaged over the range of
energy qV, assuming it is much greater than k) !where k is
the Boltzmann constant and ) is the absolute temperature". In
particular, our simulations have been performed using 500
values of energy in a range of 40 #eV around 9.03 meV.

In Fig. 1 we show, with solid lines, the values of the Fano
factor obtained for an 8 #m wide structure made up of a
series of identical barriers. In particular, the reported results
are relative to 0.425 nm wide barriers, with heights equal to
0.8 !squares", 0.25 !triangles", and 0.07 eV !circles". These
barriers !at the considered Fermi energy" have an average
transparency *=)n=1

N #$Bn
#2 /N equal to about 0.1, 0.5, and

0.9, respectively. In these simulations the distance between
adjacent barriers has been assumed to be D++, where D
=3 #m, and !from left to right" +=0,10,−6,3 ,−3,−9,5 ,
−10,−2 nm.

We see that, as expected, for all transparencies the Fano
factor for a single barrier is about 1−* !not exactly 1−*
because different modes experience different transparencies
and * is only an average value". For two barriers our results
are still in agreement with the semiclassical model of Ref. 7
and, specifically, with the results of its Eq. !17". For more
than two barriers we notice a sharp divergence from the
semiclassical prediction and that no asymptotic 1/3 value is

reached. Indeed, our results show some dependence on the
interbarrier spacings, but the overall behavior is already cap-
tured by the plots of Fig. 1. A marked difference is observed
only in the case of equidistant barriers, in which strong reso-
nances between the different interbarrier regions play a ma-
jor role, a case that we do not address in detail in this Rapid
Communication.

We have also repeated our simulations making the same
simplification adopted !for analytical convenience" in Ref. 7,
i.e., assuming a barrier transparency independent of the or-
thogonal wave vector of the impinging particle. In detail, we
have replaced the previously indicated scattering matrix for a
barrier with that of an artificial barrier in which %Bn

=
−i(1−* and $Bn

=(*, with * being the wave-vector-
independent transparency. No significant variation is ob-
served in the Fano factor when such a change is included in
our calculation !see dashed lines in Fig. 1".

In order to remove the dependence of our results on the
actual choice of the set of lengths of the interbarrier regions,
we have performed an average over several sets.13 It has
been shown that a similar approach is able to reproduce
many effects of dephasing on transport.14 The results ob-
tained by averaging over energy values and over 50 different
sets of interbarrier distances are shown in Fig. 2 as a function
of the number of cascaded barriers for the same transparency
values as in Fig. 1, assuming either a realistic barrier model
!solid lines" or a wave-vector-independent transparency
!dashed lines". Also in this case there is no clear convergence
to a common value of 1/3.

If we consider a situation with cascaded identical barriers
characterized by transparencies that are independent of the
wave vector and average over random phases, all propagat-
ing modes give the same contribution to the noise behavior
because the different values of the longitudinal wave vectors
are made irrelevant. Therefore it becomes possible to per-
form an analytical calculation of the Fano factor by consid-
ering a single mode and integrating over the phase of $n
between 0 and 2' for each interbarrier region. The analytical
treatment can be carried out for the cases of two and three
cascaded barriers !with transparency *", for which we ob-
tain, respectively,

(2 =
2!1 − *"
!2 − *"2 and (3 =

3!4 − 8* + 5*2 − *3"
16 − 24* + 9*2 , !5"

which are in agreement with the numerical results repre-
sented with dashed lines in Fig. 2. Coherently with our pre-
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FIG. 2. Same quantities as in Fig. 1 but averaged over 50 sets of
interbarrier distances.
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vious discussion, the result for two barriers coincides with
that from the semiclassical model of Ref. 7, while that for
three barriers does not. This is consistent with the conclu-
sions by Förster et al.,15 who show that only in the case of a
single probe !in our structure a probe should be included
between each pair of barriers", current fluctuation statistics
do not depend on the nature !phase averaging, elastic
dephasing, or inelastic" of the probe itself.

The key difference between the semiclassical and the
quantum model consists in the fact that a semiclassical
model !unless very peculiar assumptions are made16" lacks
localization as a result of complete incoherence, while a
quantum model does exhibit strong localization.17 In particu-
lar the one-dimensional nature of the disorder represented by
the randomly placed barriers makes the system effectively
one-dimensional regardless of its actual dimensionality. In
this case no mode mixing is introduced, and therefore the
localization length is of the order of the mean free path;
localization occurs beyond this length. Instead, in the case of
two- or three-dimensional disorder, as in Refs. 4 and 5,
strong mode mixing makes the localization length approxi-
mately equal to the mean free path times the number of
propagating modes.18

In addition, in the absence of mode mixing, it is not pos-
sible to consider the interbarrier regions as quasireservoirs,
characterized by a well-defined occupancy, that depends only
on the energy. This assumption is at the basis of the calcula-
tions of Refs. 7–9, as well as of the semiclassical Monte
Carlo numerical simulation by Liu et al.19

Instead, in the absence of mode mixing, only a mode-
dependent occupancy can be defined; we have computed it
for the same structure as in Fig. 1, in which all possible
electron states can be divided into two sets: those injected
from the left lead and those injected from the right lead.
Therefore, if we define as ,nL

and ,nR
the electron wave

functions in the generic interbarrier region - resulting from
an injection of the nth mode !with unit probability current"
from the left or right lead !respectively", the occupancy fn-

in the region - for the nth mode can be expressed as the
ratio of the partial density of states related to injection from
the left to the total density of states for that mode:20

fn-
=

*
-

#,nL
#2dxdy

*
-

#,nL
#2dxdy + *

-

#,nR
#2dxdy

. !6"

Results for the occupancy in the five interbarrier regions
of a series of six unequally spaced barriers with an average
transparency *=0.1 are reported in Fig. 3 for a selection of
eight of the 320 propagating modes. It is apparent that these
occupancies assume quite different values, with a strong dis-
persion that clearly appears in the inset, where we present the
distribution of the occupancy in the region between the third
barrier and the fourth barrier. Therefore the assumption of
quasireservoir behavior of the interbarrier regions is defi-
nitely not valid in this case. An exception is confirmed for
the case of just two barriers !thus with a single interbarrier

region", in which the occupancies are all equal and corre-
sponding to the value predicted by semiclassical models.

In the presence of mode mixing, instead, the localization
length Ll is approximately equal, as already mentioned, to
the product of the elastic mean free path L0 by the number of
propagating modes N; therefore there can be a range of de-
vice length Ld values in which the condition for diffusive
transport !L0.Ld.NL0" is satisfied, and thus the Fano fac-
tor can possibly reach the value 1/3 !as in the case of 2D or
3D disorder".

An adjustable amount of mode mixing can be introduced
by applying a magnetic field orthogonal to the plane contain-
ing the device. We have computed the Fano factor for a
1 #m wide structure with a series of ten unevenly spaced
barriers, with average interbarrier distance 500 nm. The re-
sults, obtained averaging over a number of interbarrier dis-
tance sets !40 for *=0.1, 30 for *=0.25, 20 for *=0.5, and
10 for *=0.75 and *=0.9" are reported in the inset of Fig. 4
for different choices of the barrier transparency *. In detail,
the barriers are 66 meV high, with a thickness of 4, 2.6, 1.56,
0.85, and 0.4 nm for the five considered transparencies; the
Fermi energy is 9.03 meV. We observe that, after a quick
drop, as the magnetic field increases the Fano factor settles
around values that depend on barrier transparency. In the
main panel of Fig. 4 we report the Fano factor for a constant
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FIG. 3. Values of the occupancy for eight modes in the five
interbarrier regions of a series of six unequally spaced tunnel bar-
riers with *=0.1. Inset: distribution of the occupancy for the propa-
gating modes in the third interbarrier region.
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field B=0.1 T, represented as a function of the number of barriers.
In the inset: Fano factor for a series of 10 identical barriers, as a
function of magnetic field. The dotted lines indicate the diffusive
limit of 1/3.
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magnetic field of 0.1 T as a function of the number of barri-
ers. We notice that for large values of the transparency and
thus large values of the mean free path, a diffusive transport
regime !with a Fano factor of 1/3" is achieved only for a
length much larger than the mean free path. On the other
hand, for low barrier transparencies and therefore reduced
mean free path, localization effects appear before reaching
the diffusive limit. To prevent this, we should significantly
increase the number of propagating modes and thus the lo-
calization length.

The issue is then whether in a practical system containing
cascaded barriers large enough mode mixing takes place. Be-
sides magnetic field, possible mechanisms leading to mode
mixing are scattering with irregularities in the potential !2D
or 3D disorder" or phonon scattering. Scattering due to a
disordered potential landscape can well lead to full mode
mixing, but in such a case the Fano factor of 1/3 character-
istic of diffusive transport is achieved anyway, independent
of the presence of the barriers and cannot therefore be spe-
cifically attributed to their action. As far as phonon scattering
is concerned, it can in principle introduce mode mixing, but

in the presence of strong phonon interaction the transport
regime would not be the one we are interested in, and ther-
mal noise would prevail.

A Fano factor of 1/3 might in principle also be recovered,
irrespective of the degree of mode mixing, in the presence of
a hypothetical elastic mechanism capable of suppressing
phase coherence completely.

The relatively large values of the phase coherence length
that can be achieved in modern materials at low temperature
and the low-field results for the Fano factor presented in Ref.
10 lead us to the conclusion that a superlattice or a series of
electrostatically defined barriers in a channel containing a
high-mobility two-dimensional electron gas are more likely
to exhibit localization and a Fano factor as predicted by our
model rather than a diffusive behavior. Numerical ap-
proaches along the lines we have presented could be instru-
mental in designing further experimental tests, which should
be performed on structures with unevenly spaced barriers.

We are indebted to C. W. J. Beenakker for useful discus-
sion.
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