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Shot Noise Suppression in Quasi-One-Dimensional
Field-Effect Transistors

Alessandro Betti, Gianluca Fiori, and Giuseppe Iannaccone, Member, IEEE

Abstract—We present a novel method for the evaluation of shot
noise in quasi-1-D field-effect transistors, such as those based on
carbon nanotubes and silicon nanowires. The method is derived
by using a statistical approach within the second quantization
formalism and allows the inclusion of both the effects of Pauli
exclusion and Coulomb repulsion among charge carriers. This
way, it extends the Landauer–Büttiker approach by explicitly
including the effect of Coulomb repulsion on noise. We implement
the method through the self-consistent solution of the 3-D Poisson
and transport equations within the nonequilibrium Green’s func-
tion framework and a Monte Carlo procedure for populating
injected electron states. We show that the combined effect of Pauli
and Coulomb interactions reduces shot noise in strong inversion
down to 23% of the full shot noise for a gate overdrive of 0.4 V,
and that neglecting the effect of Coulomb repulsion would lead to
an overestimation of noise up to 180%.

Index Terms—Carbon nanotube (CNT) transistors, field-effect
transistors (FETs), nanowire transistors, shot noise.

I. INTRODUCTION

IN THE past few years, huge collective effort has been
directed to assess potential performance of quasi-1-D field-

effect transistors (FETs) based on carbon nanotubes (CNTs)
[1]–[3], silicon nanowires (SNWs) [4], and graphene nanorib-
bons versus the International Technology Roadmap for Semi-
conductors (ITRS) [5] requirements, both from an experimental
and a theoretical point of view. However, attention has been
focused on electrical quantities like Ion/Ioff , subthreshold
slope, mobility, and transconductance [6]–[8], while an accu-
rate investigation of electrical noise has often been neglected.
Although the 1/f noise represents the major noise source
affecting CNT-FETs’ performance [9], [10], the intrinsic shot
noise is not only critical from analog and digital design points
of view, but it can also provide relevant information regarding
interactions among carriers [11]–[13], electron energy distribu-
tion [14], [15], and electron kinetics [16].
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Due to the limited device dimensions, even in strong inver-
sion, only few electrons take part to transport so that drain
current fluctuations can heavily affect the device electrical
behavior. Pauli and Coulomb interactions play an important role
in noise analysis through fluctuations of the occupation number
of injected states and fluctuations of the potential barrier along
the channel.

From a numerical point of view, a self-consistent (SC) solu-
tion of the electrostatics and transport equations is mandatory in
order to properly consider such effects. An analysis of this kind
has been performed for example in double-gate MOSFETs [17]
and in nanoscale ballistic MOSFETs [18], where a strong shot
noise suppression, mostly due to Pauli exclusion principle, has
been observed.

A different approach, based on quantum trajectories within
the De Broglie–Bohm framework, has been instead presented
in [19], where resonant tunneling diodes have been studied
and heavy approximations have been adopted in order to eas-
ily consider electron–electron correlation in the many-body
problem.

Actually, a complete understanding of the mechanism of
suppression of shot noise in CNT and SNW-FETs is still
a debated issue. Indeed, the significant suppression of cur-
rent fluctuations by more than a factor of 100 obtained at a
low temperature for 0.4-µm-long suspended ropes of single-
wall CNTs [20] has not been supported by a comprehensive
theoretical analysis. Recent experiments of shot noise in CNT-
based Fabry–Perot interferometers [21] show that by includ-
ing only Pauli exclusion, one is able to explain most of the
dependence of shot noise on the backgate bias, but in some
bias conditions, additional mechanisms of electron–electron
interaction might be needed to explain the observed noise sup-
pression. Theoretical effort has been mainly addressed to model
the electrical noise in SNW-FETs, where, within a scattering
approach with the limitation of excluding space-charge effects
on electron transmission, Pauli exclusion reduces electrical
noise in strong inversion down to 0.6% of the full value for
a gate overdrive of 0.3 V [22], whereas an interesting increase
of noise is observed by including electron–phonon scattering
processes [23].

Here, we present a new method for computing the shot
noise power spectral density in ballistic CNT and SNW-FETs
based on Monte Carlo (MC) simulations of randomly injected
electrons from the reservoirs. In order to consider correlations
between fermions, an analytical formula for the noise power
spectral density has been computed by means of a statistical
approach within the second quantization formalism. The de-
rived formula has then been implemented in the SC solution of
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the 3-D Poisson and Schrödinger equations, within the NEGF
formalism.

II. THEORY

The average current in a mesoscopic conductor can be ex-
pressed by means of the following Landauer’s formula:

〈I〉 =
e

π!

∫
dE

{
Tr

[
t†t(E)

]
[fS(E) − fD(E)]

}
(1)

where t is the transmission amplitude matrix for states emitted
from the source S and collected at the drain D, and fS and fD

are the Fermi–Dirac statistics of S and D, respectively.
The zero-frequency noise power spectral density for a two-

terminal conductor—the so-called Landauer–Büttiker noise
formula—reads [24], [25]

S(0) =
2e2

π!

∫
dE

{
[fS(1 − fS) + fD(1 − fD)] Tr[t†tt†t]

+ [fS(1 − fD) + fD(1 − fS)]
(
Tr[t†t] − Tr[t†tt†t]

)}
(2)

where t† is the conjugate transpose of the matrix t. However,
(2) holds only if one assumes that fluctuations of the potential
profile do not occur, i.e., that Coulomb interaction between
carriers is completely neglected. Actually, the potential barrier
along the channel fluctuates in time since randomly injected
electrons modify the height of the barrier through long-range
Coulomb interaction, which, in turn, affects carriers transmis-
sion and eventually leads to the suppression of the drain current
fluctuations.

In order to compute the expression of the power spectral
density in the general case, we take advantage of the second
quantization formalism. In particular, at zero magnetic field, the
time-dependent current operator at the source can be expressed
as the difference between the occupation numbers of carriers
moving inward and outward the source contact in each quantum
channel [24] (n+

Sm and n−
Sm, respectively), i.e.,

I(t) =
e

2π!
∑

m∈S

∫
dE

[
n+

Sm(E, t) − n−
Sm(E, t)

]
(3)

where

n+
Sm(E, t) =

∫
d(!ω)a+

Sm(E)aSm(E + !ω)e−iωt

n−
Sm(E, t) =

∫
d(!ω)b+

Sm(E)bSm(E + !ω)e−iωt. (4)

The operators a†
Sm(E) and aSm(E) create and annihilate,

respectively, incident electrons in the source lead with total
energy E in the transverse channel m. In the same way, the
creation b†Sm(E) and annihilation bSm(E) operators refer to the
electrons in the source lead for outgoing states. For the CNT
case, the channel index m runs over all the transverse modes
and different spins, whereas for SNW, it also runs along the six
minima of the conduction band in the k space. In addition, the
operators aS and bS are related through the following unitary
transformation:

bSm(E) =
∑

α=S,D

Nα∑

n∈α

sSα;mn(E)aαn(E) (5)

where the scattering matrix s has dimensions (NS + ND) ×
(NS + ND), and NS and ND are the number of quantum
channels in the source and drain contacts, respectively. In the
following, time dependence will be neglected, since we are
interested to the zero frequency case.

If |σ〉 is a many-particle (antisymmetrical) state, the oc-
cupation number σαm(E) in the reservoir α (α = S,D) in
the channel m can be either 0 or 1 and can be expressed
as σαm(E) = 〈a†

αm(E)aαm(E)〉σ . Since we are interested on
current fluctuations, we need to consider an ensemble of many
electrons states {|σ1〉, |σ2〉, |σ3〉, . . . , |σN 〉} and to compute
statistical averages 〈 〉s. By neglecting correlation between elec-
tron states corresponding to different energy or injected from
different reservoirs, the statistical average of σαm(E) reads

〈σαm(E)〉s =
〈〈

a†
αm(E)aαm(E)

〉
σ

〉
s

= fα(E). (6)

In the following, we identify 〈〈 〉σ〉s with 〈 〉. By means of (5),
we obtain the mean current as follows:

〈I〉 =
e

2π!

∫
dE

{
∑

n∈S

〈[
t†t(E)

]
nn

σSn(E)
〉

s

−
∑

k∈D

〈[
t′†t′(E)

]
kk

σDk(E)
〉

s

}
(7)

where t′ is the drain-to-source transmission amplitude matrix
[26]. Since σ2

αm = σαm ∀m ∈ α, and by exploiting the
unitarity of the scattering matrix, the mean squared current
fluctuation for unit of energy can be expressed as

var(I)
∆E

=
( e

h

)2
∫

dE
∑

α=S,D

∑

l∈α

〈
[t̃]α;ll

(
1 − [t̃]α;ll

)
σαl

〉
s

−
( e

h

)2
∫

dE
∑

α=S,D

∑

l,p∈α
l "=p

〈
[t̃]α;lp[t̃]α;plσαlσαp

〉
s

− 2
( e

h

)2
∫

dE
∑

k∈D

∑

p∈S

〈
[t′†r]kp[r†t′]pkσDkσSp

〉
s

+
1

∆E
var

{
e

h

∫
dE

(
∑

n∈S

[t̃]S;nnσSn

−
∑

k∈D

[t̃]D;kkσDk

)}
(8)

where [t̃] is defined as

[t̃]α;lp =
{

[t†t]lp, if α = S
[t′†t′]lp, if α = D

and r is the reflection amplitude matrix [26]. ∆E is our energy
step of choice, i.e., the minimum energy separation between
injected states.

Equation (8) is expressed as the sum of four terms, with
the first, second, and third terms corresponding to the partition
noise contribution. In particular, the first term is strictly related
to the quantum uncertainty of the transmission process and
disappears in the classical limit; the second term is associated
to the correlation between transmitted states coming from the
same reservoir; the third term is related to the correlation
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between transmitted and reflected states in the source lead; the
minus sign in the second and third terms is due to exchange
pairings, because of the fermionic nature of the electrons. In
particular, the second and the third terms provide physical
insights on exchange interference effects [27]. Finally, the last
term represents the injection noise obtained as the variance
computed on the ensemble of current samples.

According to Milatz’s Theorem [28], the noise power spectral
density in the zero frequency limit can be computed as S(0) =
limf→0 S(f) = limν→0[2/ν · var(I)], where ν is the injection
rate, which can be expressed as

ν = ∆E/(2π!). (9)

Eventually, the power spectral density of shot noise at zero
frequency can be expressed as

S(0) = lim
ν→0

2
ν

var(I) = lim
∆E→0

4π!var(I)
∆E

. (10)

It is worth noticing that (10) and (8) are not equivalent to
Landauer–Büttiker’s formula (2) since in (8), the transmission
(t, t′) and reflection (r) matrices are expressed as functions of
the statistics of the occupation of injected states from both con-
tacts. This way, we are able to consider the fluctuation in time
of the conduction and valence band edge profiles produced by
the random injection through long-range Coulomb repulsion,
providing a further source of noise suppression not included
in (2).

Indeed, from an analytical point of view, (8) and (10)
reduce to (2) when transmission and reflection do not depend,
through Coulomb interaction, on random occupation numbers
of injected states: in that case, we can take the terms related
to transmission and reflection out of the statistical averages
in (8). By means of (6) and exploiting 〈σαl(E)σβn(E ′)〉s =
fα(E)fβ(E ′) + δ(E − E ′)δαβδln[fα(E)−fα(E)fβ(E ′)], the
fourth term in (8) becomes
( e

h

)2
∫

dE
∑

n∈S

[
t†t(E)

]2
nn

fS(E) [1 − fS(E)]

+
( e

h

)2
∫

dE
∑

k∈D

[
tt†(E)

]2
kk

fD(E) [1 − fD(E)] (11)

since at zero magnetic field, t′†t′ = tt†. The terms δ(E − E ′),
δαβ , and δln represent the Kronecker delta. Taking advantage
of

∑
k∈D

∑
p∈S [t′†r]kp[r†t′]pk = Tr[t†t] − Tr[t†tt†t], S(0)

becomes

S(0) = lim
∆E→0

4π!var(I)
∆E

=
2e2

π!

∫
dE

{
[fS(1 − fS) + fD(1 − fD)] Tr

[
t†tt†t

]

+ [fS(1 − fD) + fD(1 − fS)]

×
(
Tr[t†t] − Tr[t†tt†t]

)
}

(12)

which is Landauer–Büttiker’s formula (2).

Let us now point out that (10) would also simplify when
identical and independent injected modes from the reservoirs
are considered. In this case, t, t′, and r are all diagonals so that
the second term in (8) becomes negligible. By exploiting the
reversal time symmetry (t′ = tt, where tt is the transpose of t)
and the unitarity of the scattering matrix, the power spectral
density becomes

S(0) =
e2

π!

{∫
dE

∑

α=S,D

∑

l∈α

〈
[t̃]α;ll

(
1 − [t̃]α;ll

)
σαl

〉
s

− 2
∫

dE
∑

l∈S

〈
[t̃]S;ll

(
1 − [t̃]S;ll

)
σDlσSl

〉
s

+
1

∆E
var

[ ∫
dE

(
∑

n∈S

[t̃]S;nnσSn

−
∑

k∈D

[t̃]D;kkσDk

)]}
.

(13)

III. SIMULATION METHODOLOGY

In order to properly include the effect of Coulomb inter-
action, we self-consistently solve the 3-D Poisson equation,
imposing Dirichlet boundary conditions in correspondence to
the metal gates and null Neumann boundary conditions on
the ungated surfaces, which define the 3-D domain. Within
an SC scheme, the 3-D Poisson equation is coupled with the
Schrödinger equation with open-boundary conditions, within
the nonequilibrium Green’s function (NEGF) formalism, which
has been implemented in our in-house open-source simulator
NanoTCAD ViDES [29]. In particular, the 3-D Poisson equation
reads

∇ (ε∇φ()r )) = − (ρ()r ) + ρfix()r )) (14)

where φ is the electrostatic potential, ρfix is the fixed charge that
accounts for ionized impurities in the doped regions, while ρ is
the charge density per unit volume, i.e.,

ρ()r ) = −e

+∞∫

Ei

dE
∑

α=S,D

∑

n∈α

DOSαn()r, E)σαn(E)

+e

Ei∫

−∞

dE
∑

α=S,D

∑

n∈α

DOSαn()r, E) [1 − σαn(E)] (15)

where Ei is the midgap potential, DOSαn()r, E) is the local
density of states associated to channel n injected from contact
α, and )r is the 3-D spatial coordinate.

From a numerical point of view, in order to model the
stochastic injection of electrons from the contacts, a statistical
simulation on an ensemble of random configurations of injected
electron states from both contacts has been performed. In par-
ticular, we have uniformly discretized with step ∆E the whole
energy range of integration [see (8) and (15)]. Each random
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Fig. 1. Three-dimensional structures and transversal cross sections of the
simulated (top) CNT and (bottom) SNW-FETs.

injection configuration has been obtained by extracting a ran-
dom number r uniformly distributed between 0 and 1 for each
state represented by energy E, reservoir α, and quantum chan-
nel n. The state is occupied if r is smaller than the Fermi–Dirac
factor, i.e., σSn(E)[σDn(E)] is 1 for r < fS(E)[fD(E)], and
0 otherwise.

SC simulations for a given actual random statistics in the
source and drain contacts have been performed, and at con-
vergence, the transmission (t, t′) and reflection (r) matrices
have been computed, obtaining an element of the ensemble.
In particular, for an actual electron distribution in the contacts,
the Schrödinger equation is solved in order to obtain the spatial
charge distribution (15) along the channel. Then, the latter is in-
cluded in (14), and the electrostatic potential is then computed,
and once convergence of the NEGF–Poisson iteration scheme is
achieved, the scattering matrix is evaluated, and a new sample
to be added to the noise ensemble is obtained. Finally, the power
spectral density S(0) can be extracted by means of (8) and
(10). From a computational point of view, we have verified that
S(0) computed on a record of 500 samples, using the energy
step ∆E = 5 × 10−4 eV, represents a good tradeoff between
computational cost and accuracy of results [30].

Let us mention the fact that our approach is based on a
mean field approximation of the Coulomb interaction, and that,
therefore, the exchange term is not included. In the following,
we will refer to SC simulations when the Poisson–Schrödinger
equations are solved considering fS and fD in (15), while
we refer to SC-MC simulations when statistical simulations
with random occupations σSn(E) and σDn(E) inserted in (15)
are used. SC-MC simulations of randomly injected electrons
allow us to consider both the effects of Pauli and Coulomb
interactions on noise. As a test, we have verified that if we
perform MC simulations, keeping the potential profile along
the channel fixed and exploiting the one obtained by means of
SC simulation, the noise power spectrum computed this way
reduces to Landauer–Büttiker’s limit (2), as already proved in
an analytical way (12): we refer to such simulations as non-SC-
MC (non-SC-MC) simulations.

IV. SIMULATION RESULTS

A. Considered Devices

The simulated device structures are depicted in Fig. 1. We
consider a (13,0) CNT embedded in SiO2 with an oxide thick-
ness equal to 1 nm, an undoped channel of 10 nm, and 10-nm-
long n-doped CNT extensions, with a molar fraction f = 5 ×
10−3. The SNWT has an oxide thickness tox equal to 1 nm,
and the channel length L is 10 nm. The channel is undoped,
and the source and drain extensions (10 nm long) are doped
with ND = 1020 cm−3. The device cross section is 4 × 4 nm2.
A pz-orbital tight-binding Hamiltonian has been assumed for
CNTs [31], [32], whereas an effective mass approximation has
been considered for SNWTs [33], [34] by means of an adiabatic
decoupling in a set of 2-D equations in the transversal plane and
in a set of 1-D equations in the longitudinal direction for each
1-D subband.

For both devices, we have developed a quantum fully ballistic
transport model with semiinfinite extensions at their ends. A
mode space approach has been adopted since only the lowest
subbands take part to transport: we have verified that four
modes are enough to compute the mean current both in the
ohmic and saturation regions. All calculations have been per-
formed at the temperature T = 300 K.

B. DC Characteristics

In Fig. 2, the transfer characteristics for different drain-to-
source biases VDS computed performing SC and SC-MC sim-
ulations are plotted as a function of the gate overdrive VGS–Vth

in the logarithmic scale, both for CNT and SNW devices. In
particular, the threshold voltage Vth for the CNT-FET at VDS =
0.05 and 0.5 V is 0.43 V, whereas we obtain Vth = 0.13 V
for VDS = 0.05 V and 0.5 V for the SNW-FET. As can be
noted, SC and SC-MC simulations give practically the same
results for CNT-FET, except in the subthreshold region where
an interesting rectifying effect of the statistics emerges in the
MC simulations for a drain-to-source bias VDS = 0.5 V.

Instead, the rectifying effect is larger for SNW-FET, and
differences up to 30% between the drain current 〈I〉 computed
by means of SC-MC and SC simulations can be also observed
in the above threshold regime. In particular, for a gate volt-
age VGS = 0.5 V and a drain-to-source voltage VDS = 0.5 V,
the drain current 〈I〉 holds 2.42 × 10−5 A, applying (7), and
1.89 × 10−5 A, applying Landauer’s formula (1). The current
in the CNT-FET transfer characteristics increases for negative
gate voltages due to the interband tunneling. Indeed, the larger
the negative gate voltage, the higher the number of electrons
that tunnel from bound states in the valence band to the drain,
leaving positive charge in the channel, which eventually lowers
the barrier and increases the off current [35].

In the inset of Fig. 2, the average number of electrons
inside the channel of a CNT and SNW-FET for two different
biases VDS = 0.5 and 0.05 V is shown. As can be seen, only
very few electrons contribute to transport at any given instant,
which requires us to attentively evaluate the sensitivity of such
devices to charge fluctuations: the smaller the drain-to-source
voltage, the larger the average number of electrons in the
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Fig. 2. Transfer characteristics computed for VDS = 0.5 and 0.05 V, ob-
tained by SC-MC and SC simulations, for CNT and SNW-FET. Full dots refer
to CNT, and empty dots refer to SNW. Inset: average number of electrons in the
CNT-FET and SNW-FET channels, evaluated for VDS = 0.5 and 0.05 V.

Fig. 3. Fano factor as a function of the drain current 〈I〉 for (a) CNT and
(b) SNW-FETs for VDS = 0.5 V. Solid line refers to the Fano factor F
obtained by means of SC-MC simulations, dashed line (diamonds) by means of
applying (2), and dotted line (triangles) by means of non-SC-MC simulations.

channel, since, for low VDS , carriers are injected from both
contacts.

C. Noise

Let us now focus our attention on the Fano factor F , which
is defined as the ratio of the computed noise power spectral
density S(0) and the full shot noise 2e〈I〉, F = S(0)/(2e〈I〉).
In Fig. 3, the Fano factor for both CNT-FETs and SNW-FETs
is shown for VDS = 0.5 V as a function of drain-to-source
current 〈I〉.

Let us separately discuss the effects of Pauli exclusion alone
and the concurrent Pauli and Coulomb interactions. Triangles
in Fig. 3 refer to F , computed by means of non-SC-MC
simulations on 104 samples, while diamonds refer to the results
obtained by means of Landauer–Büttiker’s formula, applying
(2). As expected, the two approaches give the same results
for both structures. Solid lines refer to S(0), computed by

means of (8) and (10) and SC-MC simulations, i.e., Pauli and
Coulomb interactions simultaneously taken into account.

In the subthreshold regime (〈I〉 < 10−9 A), drain current
noise is very close to the full shot noise, since electron–electron
correlations are negligible due to the very small amount of
mobile charge in the channel.

From the point of view of (2), for energies larger than the top
of the barrier, we have fD(E) + fS(E) + 1, and the integrand
in (2) reduces to Tr[t†t(E)]fS(E). Instead, for energies smaller
than the high potential profile along the channel, [t†t(E)]nm +
1 ∀n,m ∈ S so that we can neglect Tr[t†tt†t] in (2), with
respect to Tr[t†t]. Since fD(E) + fS(E), the integrand in (2)
still reduces to Tr[t†t(E)]fS(E). The Fano factor then becomes

F =
S(0)
2e〈I〉 ≈

2e2

π!
∫

dE Tr
[
t†t(E)

]
fS(E)

2e e
π!

∫
dE Tr [t†t(E)] fS(E)

= 1. (16)

In the strong inversion regime instead (〈I〉 > 10−6 A), the
noise is strongly suppressed with respect to the full shot value.
In particular, for a SNW-FET, at 〈I〉 ≈ 2.4 × 10−5 A (VGS −
Vth ≈ 0.4 V), combined Pauli and Coulomb interactions sup-
press shot noise down to 23% of the full shot noise value, with a
significant reduction with respect to the value predicted without
including space charge effects as in [22], while for CNT-FET,
the Fano factor is equal to 0.27 at 〈I〉 ≈ 1.4 × 10−5 A (VGS −
Vth ≈ 0.3 V). Indeed, an injected electron tends to increase the
potential barrier along the channel, leading to a reduction of the
space charge and to a suppression of charge fluctuation. Note
that by considering only Pauli exclusion principle, we would
overestimate the shot noise by 180% for SNWT (〈I〉 ≈ 2.4 ×
10−5 A) and by 70% for CNT-FET (〈I〉 ≈ 1.4 × 10−5 A).

D. Shot Noise Versus Thermal Channel Noise

According to the classical approach for the formulation of
drain current noise, channel noise is typically described in
terms of a “modified” thermal noise, as S(0) = γST , where
ST = 4KBTgd0 is the thermal noise power spectrum at zero
drain-to-source bias VDS , kB is the Boltzmann constant, γ is
a correction parameter, and gd0 = (∂〈I〉/∂VDS)VDS=0 is the
source-to-drain conductance at zero VDS .

Although the classical formulation accurately predicts drain
current noise in long-channel MOSFETs, where γ is equal
to 1 in the ohmic region and 2/3 in saturation [28], it un-
derestimates noise in short-channel devices. In particular, ex-
perimental evidences [36] of an excess noise in short-channel
MOSFET have been explained in terms of the limited number
of scattering events inside the channel, which is ineffective in
suppressing the nonequilibrium noise component [37], or in
terms of a revised classical formulation by considering short-
channel effects, such as the carrier heating effect above the
lattice temperature [38].

Actually, it can clearly be seen that nonequilibrium transport
easily provides γ > 1, and that the cause of γ > 1 is simply due
to the fact that channel noise can be more properly interpreted
as shot noise. For example, in the particular case of ballistic
transport considered here, we can plot γ as S(0)/ST as a
function of the gate voltage in Fig. 4(c). As can be seen, values
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Fig. 4. Noise power spectral density obtained by SC-MC simulations and
thermal noise spectral density as functions of the gate voltage for (a) CNT-
FETs and (b) SNW-FETs: the considered drain-to-source biases (VDS =
0.5 and 0.05 V) are shown in brackets. (c) Ratio between the noise power
obtained by SC-MC simulations and the thermal noise density as a function
of the gate voltage. gd0 is the conductance evaluated for VDS = 0 V : gd0 =
(∂〈I〉/∂VDS)VDS=0.

of γ larger than 1 can easily be observed in weak and strong
inversion. The strange behavior of γ as a function of the gate
voltage is simply due to the fact that one uses an inadequate
model (thermal noise) corrected with the γ parameter to de-
scribe a qualitatively different type of noise, i.e., shot noise.

E. Effect of Scaling on Noise

Let us now discuss the effect of scaling on noise, focusing
our attention on a (13, 0) CNT-FET. One would expect that
an increase in the oxide thickness would reduce the screening
induced by the metallic gate so that the Coulomb interaction
would be expected to produce a larger noise suppression. For
example, in the limit of a multimode ballistic conductor without
a gate contact, significant suppression of about two orders of
magnitude with respect to the full shot value has been shown
by Bulashenko and Rubí [39].

However, Bulashenko and Rubí [39] exploit a semiclassical
approach, assuming a large number of modes and the conserva-
tion of transversal momentum, i.e., the role of the transversal
electric field induced by the gate voltage is completely ne-
glected. In our case, only four modes contribute to transport,
while the top and bottom gates of the simulated devices par-
tially screen the electrostatic repulsion induced by the space
charge in the channel on each injected electron so that a smaller
noise suppression than the one achieved in [39] can be expected.

The Fano factor as a function of the average number of
electrons inside the channel for unit length, computed by means
of SC simulation and applying (2), for three CNTs with dif-
ferent oxide thicknesses tox and channel lengths L is shown
in Fig. 5(a): it shows results for CNT with tox = 1 nm and
L = 6 nm (A), CNT with tox = 1 nm and L = 10 nm (B), and
CNT with tox = 2 nm and L = 10 nm (C). Fig. 5(b) shows the
Fano factor computed by performing SC-MC simulations and
applying (8) and (10). As can be seen, if the Fano factor is
plotted as a function of the number of electrons per unit length,

Fig. 5. Fano factor as a function of the average number of electrons inside the
channel per unit length for three different (13, 0) CNT-FETs: (A) tox = 1 nm
and L = 6 nm; (B) tox = 1 nm and L = 10 nm; and (C) tox = 2 nm and L =
10 nm. (a) Only the effect of the Pauli principle is shown (2). (b) Effect of both
Pauli and Coulomb interactions is considered. The drain-to-source bias VDS is
0.5 V.

as in Fig. 5, curves are very close to one another, and effects of
scaling are predictable.

V. CONCLUSION

We have developed a novel and general approach to study
shot noise in nanoscale quasi-1-D FETs, such as CNT-FETs
and SNW-FETs. Our first important result is the derivation
of an analytical formula for the noise power spectral den-
sity that exploits a statistical approach and the second quan-
tization formalism. Our formula extends the validity of the
Landauer–Büttiker noise formula (2) to also include Coulomb
repulsion among electrons. From a quantitative point of view,
this is very important since we show that by using only the
Landauer–Büttiker noise formula, one can overestimate shot
noise by as much as 180%. The second important result is the
implementation of the method in a computational code, based
on the 3-D SC solution of Poisson and Schrödinger equations
with the NEGF formalism, and on MC simulations over a large
ensemble of occurrences, with random occupation of electronic
states coming in from the reservoirs. As a final note, we show
that scaling of ballistic 1-D FETs is expected to weakly affect
drain current fluctuations, even in the degenerate injection limit.
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