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a b s t r a c t

In this paper we compare advanced modeling approaches for the determination of the drain current in
nanoscale MOSFETs. Transport models range from drift–diffusion to direct solutions of the Boltzmann-
Transport-Equation with the Monte-Carlo method.
Template devices representative of 22 nm Double-Gate and 32 nm Single-Gate Fully-Depleted Silicon-

On-Insulator transistors were used as a common benchmark to highlight the differences between the
quantitative predictions of different approaches. Using the standard scattering and mobility models for
unstrained silicon channels and pure SiO2 dielectrics, the predictions of the different approaches for
the 32 nm template are quite similar. Simulations of the 22 nm device instead, are much less consistent,
particularly those achieved with MC simulators. Comparison with experimental data for a 32 nm device
shows that the modeling approach used to explain the mobility reduction induced by the high-j dielec-
tric is critical. In the absence of a clear understanding of the impact of high-j stack on transport, different
models, all providing agreement with the experimental low-field mobility, predict quite different drain
currents in saturation and in the sub-threshold region.

! 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Many modeling approaches for the determination of the drain
current IDS in MOSFETs are currently used and developed. One of
the main reasons driving these modeling efforts is the industry
need to understand performance improvements due to quasi-bal-
listic transport and other technology boosters such as strain,
high-j dielectrics and ultra-thin-body Silicon-On-Insulator (SOI)
architectures [1]. The possible modeling approaches can be
grouped in a few families which range from modifications of the
conventional drift–diffusion (DD) model used in commercial TCAD
tools to advanced Monte-Carlo [2] (MC) and Non-Equilibrium-

Green’s-Function (NEGF) simulators [3] able to handle the strongly
off-equilibrium transport taking place in decananometric devices.
Even inside a given family of simulation approaches, many options
are possible e.g. handle quantization in the inversion layer or other
physical effects. For example in the MC family some models based
on the free-electron gas [4–6] neglect quantization, while others
adopt quantum corrections [7–9]. Models based on a multi-sub-
band description of the carrier gas [10–12] and approaches based
on the solution of the Wigner equation [13,14] instead, explicitly
incorporate quantummechanical effects. Similar distinctions apply
also to drift–diffusion simulators.

A transparent and thorough assessment of these models is not
trivial. Validation by direct comparison with experimental data is
often unable to rule out possible model inaccuracies, since many
parameters of the experimental devices, such as doping profiles

0038-1101/$ - see front matter ! 2009 Elsevier Ltd. All rights reserved.
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and series resistances, which play a critical role in determining IDS,
are not precisely known and are often used as adjusting
parameters.

Comparison between simulations of the same devices per-
formed with different models represents a simple and sound meth-
odology to identify and quantify the impact of the assumptions
taken by the different models. Examples of this methodology are
[15–18], works that, in our opinion, have increased the awareness
and the confidence of the electron device community in the capa-
bilities of device modeling.

In this paper we have followed an approach similar to the one in
[15–18]. We have first defined template (idealized) devices: a
32 nm Fully-Depleted-SOI (FDSOI) and a 22 nm Double-Gate (DG)
device, both optimized for low-stand-by-power applications. Then
we have simulated them with the available modeling approaches,
all previously calibrated on the universal mobility curves [19]. Re-
sults in terms of low-field mobility, drain current and internal
quantities (concentration and velocity) have been compared. This
provides us an estimate of the degree of convergence between
the different transport models in aggressively scaled devices. We
have then applied the models to the simulation of a real device
(a 32 nm FDSOI similar to one of the template devices), paying spe-
cial attention to the modeling of the mobility reduction induced by
the use of high-j dielectrics. In particular, the scattering and
mobility models have been calibrated on the experimental low-
field mobility, then the simulated drain current has been compared
to the experimental data without any further adjustment.

The paper proceeds as follows. The template devices are de-
scribed in Section 2. An overview of the simulation approaches is
provided in Section 3. The results of the comparison between mod-
els carried out on the template devices are reported in Section 4.
Comparison between simulation and experimental data for a
32 nm device is presented in Section 5. Conclusions are finally
drawn in Section 6.

2. Simulated devices

The 32 nm FDSOI template is sketched in Fig. 1. The channel is
lowly doped ð1015 cm"3Þ. The substrate is p-type ðN ¼ 1018 cm"3Þ.
The metal work-function is 4.6 eV. The gate stack consists of
2.3 nm of HfO2 on top of 0.8 nm of SiO2 (EOT = 1.2 nm). The spacer
is made of Si3N4 and comes in direct contact to the silicon. Doping

profiles for the S/D regions have been obtained from process sim-
ulations of a realistic 32 nm process. As we will see in Section 5,
experimental data for a device similar to this template are avail-
able and will be compared with the predictions of the various sim-
ulation models. At this stage, before arriving to Section 5, we will
denote with 32 nm FDSOI device the idealized template, not the
real device.

The 22 nm DG device is an idealized Double-Gate MOSFET with
a gate length of 22 nm, a gate stack consisting of 2.4 nm of HfO2 on
top of 0.7 nm of SiO2 (EOT = 1.1 nm). The silicon film thickness is
10 nm and the metal work-function is 4.8 eV. The doping profiles
are similar to the ones of the 32 nm template, with all the diffusion
lengths scaled by 22/32.

Both templates are n-type and feature unstrained Si channels.

3. Simulation approaches

In the following, the key features of each model (identified with
the acronym of the main developer) are presented. For a sake of a
more transparent comparison we group the models in two fami-
lies: the MC family, which collects models based on the direct
solution of the Boltzmann-Transport-Equation (BTE) using the
Monte-Carlo method [2], and the DD family, which gathers drift–
diffusion-like models where only the first momenta of the BTE
are calculated.

3.1. MC family

3.1.1. UD-MSMC
Multi-subband ensemble Monte-Carlo described in [20]. It pro-

vides the coupled solution of the effective-mass Schrödinger equa-
tion in each section of the device, of the system of coupled BTEs for
each subband in the inversion layer and of the 2D Poisson equation.
In this way quantization effects such as charge repulsion from the
channel/dielectric interface, subband repopulation, dependence of
the scattering rate on the size- and bias-induced quantization
[21] are naturally taken into account. An analytical non-parabolic
model is used for the energy dispersion of the subbands. A first or-
der approach to include quantum effects in the transport direction
has been implemented as described in [22]. Scattering mechanisms
included in the solution of the BTE are bulk phonons and surface
roughness (SR), with the model described in [23]. The models for
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Fig. 1. Structure of the 32 nm FDSOI template transistor used in this work. Only one half of the symmetric structure is reported. All dimensions are in nm.
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the scattering mechanisms related to high-j dielectrics (remote-
phonons and remote-charge) and used in Section 5 are described
in [24]. Ionized impurity (II) scattering in the S/D extensions is
not active in these simulations, but series resistances extracted
from DD simulations ðRS ¼ RD ¼ 90 X lm for the 22 nm template
and 60 X lm for the 32 nm one) have been introduced as lumped
elements. Vertical S/D contacts are placed just at the end of the
spacers (x = 26 nm in Fig. 1).

3.1.2. BO-MC
Full-band ensemble Monte-Carlo (free carrier gas) [25] with

quantum corrections (effective potential). Scattering mechanisms
include phonons, SR, II as well as carrier-plasmon in the S/D [26].
The model for SR is based on the extension to the free carrier gas
of the model for the quasi-2D carrier gas, as described in [25]. II
scattering in the S/D is calibrated to reproduce bulk mobility data
for doping up to 1021 cm"3.

3.1.3. ETH-MC
Full-band ensemble Monte-Carlo (free carrier gas) with phonon,

II and SR scattering [27]. The scattering physics is the same as in
[28]. Quantum correction are not taken into account. SR is included
using partially diffusive scattering at the SiO2 interface with a
Fuchs factor of 20%.

3.1.4. Numonyx-MC
Full-band ensemble Monte-Carlo [29] (free carrier gas) featur-

ing quantization effects through a quantum mechanical correction
of the potential that is computed by solving self-consistently the
Schrödinger equation in each section of the device. The silicon
anisotropic full-band structure is computed with the Empirical
Pseudopotential Method [30]. Scattering mechanisms are assumed
to be isotropic and include: elastic acoustic phonon scattering,
inelastic optical phonon scattering, II scattering (according to the
isotropic model of [28]), impact ionization. SR scattering is treated
as in [31] i.e. by including both surface roughness and surface pho-
non scattering mechanisms as a function of the average electric
field weighted by the carrier concentration. Phonon scattering for
electrons and holes has been extensively calibrated to reproduce
a large variety of experiments including strain dependent mobility
[29,32,33].

3.1.5. IEF-MC
Ensemble Monte-Carlo described in [34]. Quantum corrections

are not taken into account here and carriers are treated as a
three-dimensional (free) gas in the simulator. We consider an ana-
lytical conduction band structure of silicon consisting of six ellip-
soidal non-parabolic D valleys located along the [100] directions
at 85% of the Brillouin zone edge. The energy-dependent scattering
rates are calculated prior to the simulation and stored in a look-up
table used throughout the simulation. All relevant scattering
mechanisms are included, i.e. electron–phonon, II and SR scatter-
ing, according to the models described in [35]. Throughout this
work in this simulator and in the other MC simulators, we assume
bulk phonon energies and the same coupling constants as in bulk Si
without including possible effects on phonon dispersion related to
ultra-thin layers.

3.1.6. UGLA-MC
3D Monte-Carlo simulator [36]. An efficient methodology is

used for the fully self-consistent inclusion of 3D density gradient
(DG) quantum corrections [37]. Efficient analytic ellipsoidal, non-
parabolic band models are employed and all major phonon
mechanisms required to calibrate to bulk mobility in silicon are in-
cluded. Within device simulation, carriers are treated as a free car-
rier gas and II scattering is included as in bulk via the Brooks–

Herring formalism with static screening based upon the local car-
rier concentration and corrected for degeneracy. Ridley’s third
body exclusion is also incorporated in order that the scattering rate
in regions of low carrier density is low enough to allow efficient
simulation. SR scattering is included via Ando’s model, using a
rejection technique based upon the local perpendicular field, and
has been calibrated to experimental universal mobility results.

3.2. DD family

3.2.1. BO-QDD
1D drift–diffusion solver for SOI-MOSFETs combined with the

solution of the coupled Schrödinger–Poisson equations on the de-
vice cross-sections normal to the transport direction [38]. The
physical model thus accounts for the quantization due to both
the structural confinement and the application of the transverse
effective field by realistically computing the device electrostatics.
The harmonization of the drift–diffusion model with the Schrö-
dinger equation is pursued by means of Bohm’s theory of quantum
potential. The model requires the solution of as many drift–diffu-
sion equations as the number of populated subbands. A physi-
cally-based unified mobility model has been incorporated in the
QDD solver, which is an analytical function of the effective field
and doping concentration. The model provides the effective
mobility of the 2DEG in a SOI MOSFET channel by averaging the
single-valley mobilities weighted with their respective valley pop-
ulations. Elliptic parabolic bands for the six conduction valleys are
assumed. The lowest subband energies of each valley derived from
the Schrödinger–Poisson solver are used to calculate the relative
valley population by assuming Boltzmann statistics. For the sin-
gle-valley mobilities, the model accounts for phonon scattering,
Coulomb scattering and SR scattering, combined via Matthiessen’s
rule. More details about the mobility models are given in [39,40].
Velocity saturation at high longitudinal fields is accounted for by
means of the Caughey–Thomas formula [41] with vsat ¼ 1:07%
107 cm=s.

3.2.2. UGLA-aDD
3D atomistic drift–diffusion simulator [42]. It employs density

gradient quantum corrections [43]. In this work, calibration has
matched standard Dessis [44] simulations.

3.2.3. PI-MSDD
Multi-subband DD, i.e. self-consistent solution of the 2D Pois-

son and Schrödinger equations (in the direction perpendicular to
the Si/SiO2 interface), coupled with the solution of the continuity
equation along subbands in the DD approximation [45,46]. The
low-field mobility of [47] has been implemented, while the ap-
proach described in [48] has been adopted for high electric fields.

3.3. Other transport approaches

3.3.1. UGLA-NEGF
Modified version [49] of the fully 2D NEGF simulator initially

developed by NASA [50]. In this work scattering is not included,
so that carriers move ballistically from source to drain.

3.3.2. WUT
Electron mobility model based on the relaxation time approxi-

mation, employing the Matthiessen’s rule for different scattering
mechanisms. It uses a 1D Poisson-Schrödinger solver which can
handle both open and closed boundary conditions for the wave
functions, and also different co-existing potential wells (or
channels) may be considered independently. Electron mobility in
multi-layered structures may be investigated, including bulk
devices, SG and DG SOI devices, devices with strained-Si/SiGe
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channels and high-j gate stacks. The phonon limited mobility is
calculated within the isotropic approximation. The SR scattering
model is based on the Ando’s approach, modified to account for
thickness fluctuations of the structure component layers [51,52].
Contribution of roughness of each interface (front and back in
the case of SOI) can be modeled independently. An exponential
spectrum of roughness is employed. The Coulomb scattering lim-
ited mobility is obtained by determining screened scattering
potentials from Coulomb centers and determining the correspond-
ing relaxation times, following the approach presented in [53].
Influence of charges located in the channel, in the dielectric layers
and at the corresponding interfaces may be considered.

3.4. Model calibration

The models described above differ in terms of band-structure,
scattering models, treatment of non-local transport, etc. For the
sake of a fair comparison, all simulators have been first calibrated
to reproduce the universal curves in bulk Si devices (see Fig. 2).
More details about about this step of the procedure can be found
in the references provided in the previous sections.

At the time of the comparison, not all models contained all the
ingredients to simulate advanced devices as the template transis-
tors defined in Section 2. In particular, some handle strained chan-
nels but not high-j stacks. Furthermore, scattering models for
options such as high-j dielectrics are not well assessed yet, since
there is still a debate about the relative contribution of remote-
phonons [54] and remote-Coulomb scattering [55], and a large
spread exists between the prediction of the different models for re-
mote-phonon scattering [24]. For these reasons, although the tem-
plate devices described in Section 2 include high-j stacks, and
although 32 nm and 22 nm devices are likely to include strained
channels, when simulating the template devices we consider un-
strained Si and neglect the scattering mechanisms induced by
the presence of the high-j dielectric. This latter aspect will be ad-
dressed in Section 5 when comparing the various simulation ap-
proaches against experimental data for nanoscale MOSFETs
featuring high-j dielectric.

4. Results

In this section we report the results obtained by simulating the
template devices of Section 2 with the models described in Section
3. In all the following figures we have used a consistent set of sym-
bols, so that each model is always identified by the same symbol
and type of line. All models of the MC family are identified by solid

lines, whereas models of the DD family are identified by dashed
lines.

4.1. Low-field mobility

We report in Figs. 3 and 4 the low-field mobility as computed in
long channel devices with the same vertical structure as the 32 nm
FDSOI and 22 nm DG templates. The mutual agreement between
the different models is quite good at large inversion charges Ninv,
in particular in the 32 nm FDSOI template, whereas discrepancies
appear at low Ninv, especially in the 22 nm DG device. This is
mainly due to the different treatment of phonon scattering in
inversion layers in the various models.

Note that experimental effective mobility curves are different for
poly gates and metal gates [55]. However, in this comparison we do
not consider effects related to the gate material such as remote-Cou-
lomb scattering, plasmons in poly-silicon.

4.2. Drain current in the 32 nm template

Figs. 5 and 6 report I/V curves of the 32 nm FDSOI template at
low and high drain–source voltages, respectively.

Considering the models of the DD family, the figures show a
more than satisfactory mutual agreement, that has been observed
also below threshold (not shown).
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Considering now MC models, which take into account more
accurately the quasi-ballistic nature of carrier transport in short
MOSFETs, the mutual agreement is quite satisfactory, much better
of what has been found in [18], mainly because in the 32 nm FDSOI
device considered in this work the role of II scattering in the S/D
regions is significantly reduced with respect to the devices in
[18]. It is also interesting to note that different treatments of quan-
tization (MSMC vs. quantum corrections vs. no quantization) and
of different descriptions of the band-structure (full-band vs. simple
non-parabolic analytical bands) only have a marginal impact on
the simulated current of this device.

As expected, the current provided by the MC models is larger
than the one given by the DD ones at high VDS, where non-equilib-
rium effects become significant. At low VDS, instead, the two ap-
proaches give essentially the same current, as it is expected since
the device works close to equilibrium. In some cases (ETH-MC vs.
UGLA-aDD) current from DD is larger than from MC, consistently with
the failure of DD models also near equilibrium reported in [56].

4.3. Drain current in the 22 nm DG template

Comparisons between the MC, DD and NEGF results for the
22 nm DG template are reported in Figs. 7 and 8 for low and high
VDS, respectively.

Concerning the DD models, the overall agreement is essentially
as good as for the 32 nm device.

Concerning the MC models, at low VDS the agreement between
IDS predictions is quite poor, but it improves for VDS ¼ 1 V. Possible
explanations can be traced back to the different modeling of SR and
phonon scattering in thin film Double-Gate SOI structures, since

we have seen that also the differences in low-field mobility in this
device are significant (see Fig. 4) and the device works at lower
effective field compared to the 32 nm FDSOI template.

Since in the 22 nm DG device the impact of II in the S/D regions
is large (the series resistances extracted from DD simulations are
90þ 90 X lm), we have performedMC simulations without II scat-
tering to isolate the effect of the various scattering mechanisms on
the spread between the simulation results. As it can be seen in
Fig. 9, without II the spread between the MC results is smaller than
in Figs. 7 and 8, but still significant, especially at low VDS, meaning
that the different treatment of II scattering [18] implemented in
the models is only one of the reasons for the spread between the
MC results.

4.4. Summary of the comparison in terms of I/V curves

A direct mutual comparison between the families of models
(DD, MC and NEGF) is summarized in Table 1. We see that:

(a) DD and MC models provide quite similar IDS at low VDS, as it
is expected since in this case the transport regime is close to
equilibrium conditions.

(b) Ionized impurity scattering in the S/D is important, espe-
cially at low VDS, where the voltage drop on the S/D regions
is a significant fraction of the applied VDS.

(c) Purely ballistic transport models (as the NEGF solver used
here) significantly overestimate the IDS of these nanoscale
devices, since they neglect scattering in the channel as well
as in the S/D regions.
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4.5. Internal quantities

To further investigate the origin of the discrepancies between
the different modeling approaches, we have compared internal
quantities (inversion charge and average velocity profiles) as ob-
tained with the various simulators. Results are reported in Figs.
10 and 11 for the 22 nm DG device and in Figs. 12 and 13 for the
32 nm FDSOI.

The correlation between the spread of the drain currents and
the spread in terms of average velocity is not so clear. The differ-
ence in the average velocity predicted by many models over a large
fraction of the channel is often even larger than that in the corre-
sponding drain currents, in particular for the 32 nm FDSOI device
(compare Figs. 12 and 6). In fact it is the velocity near the injection
point (the so-called virtual source) that essentially controls the cur-
rent drive of the device [57,26]. In this respect, we see that the
velocity in the DD models is limited to the saturation velocity
(approximately 107 cm=s), whereas the MC models feature peak
velocities that can be more than two times larger, but the differ-
ences in terms of IDS are significantly smaller (see Table 1). On
the other hand these differences in terms of velocity have a large

impact in the determination of the cut-off frequency [58] of the
devices.

The differences in terms of inversion charge that can be ob-
served in Figs. 11 and 13 in the central portion of the channel
and close to the drain junction can be interpreted as differences
in terms of velocity. In fact, also in the case of Ninv, it is the value
at the virtual source that really controls the current.

We have thus collected the inversion charge and average veloc-
ity at the virtual source for some of the modeling approaches, see
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Table 1
Comparison between DD, MC and NEGF IDS values (mA/lm) for VGS ¼ 1 V. The data
are averages of the results reported in the previous figures.

Dev. (nm) VDS DD MC (II) MC (no-II) NEGF

22 0.1 0.3 0.3 0.6 0.85
22 1.0 0.7 1.0 1.3 2.3
32 0.1 0.3 0.3 0.45 n.a.
32 1.0 0.55 0.8 0.9 n.a.
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Table 2. However also this comparison does not help too much in
understanding the origin of the different model predictions. First
of all, being all the approaches self-consistent, they provide differ-
ent potential profiles, and thus different positions of the virtual
source. Since in all cases the virtual source is in the region where
the carrier concentration varies very rapidly over space (as it can
be seen bymapping the xVS data in Table 2 in Figs. 11 and 13), small
differences in xVS translate in large differences in inversion charge
(and thus in velocity) much larger than the differences in terms of
drain current. This is consistent with what has been found in [59].

We have also verified that the product between the inversion
charge and the electron velocity (which multiplied by the electron
charge gives the current density per unit width) is essentially constant
along the channel. Small fluctuations can be observed in some of the
MC models, but they are much smaller than the differences in terms
of drain current observed e.g. in Figs. 7 and 8.

5. Comparison with experimental data

Devices similar to the template 32 nm FDSOI described in Sec-
tion 2 have been fabricated by ST Crolles. An extensive character-
ization activity has been carried out, including determination of
the low-field mobility in long channel devices, of the I/V curves
in devices with gate length down to 30 nm and of the source and
drain series resistances. TEM images have been used for an accu-
rate determination of the thickness of the different layers (SOI film,
interfacial SiO2 layer and high-j material). The main differences
between the template 32 nm FDSOI described in Section 2 and
the fabricated devices are listed below:

(1) The thickness of the interfacial layer is 1.3 nm.
(2) The high-jmaterial is HfZrO2; we have assumed a dielectric

constant of 15!0 in the simulations.
(3) The thickness of the high-j layer is 1.9 nm.

(4) The doping below the BOX is 2% 1015 cm"3.
(5) Series resistances have been estimated as RS ¼ RD ¼

100 X lm [60].
(6) The device is strained: stress in the channel is transferred by

a tensile cap liner around 500 MPa (Contact etch stop layer);
process simulations have shown that the stress level is
strongly layout dependent, but that in large width devices
(as the ones considered in the following), strain can be con-
sidered as uniaxial; the valley splitting induced by a strain
level of 500 MPa (approximately 10 meV) and the corre-
sponding variation of the transport mass (0:18m0 instead
of 0:19m0) are so small that have a negligible effect on the
drain current. MSMC simulation with and without account-
ing for that show a drain current difference of about 5% for
high as well as low VDS.

Since the fabrication process is similar to the one on which we
based the process simulations used to determine the S/D doping
profiles of the template 32 nm FDSOI, we have assumed that the
fabricated devices have the very same S/D doping profile of the
template 32 nm FDSOI device, and we have used the latter in
the simulations reported in the following. Since uncertainties in
the orders of a few nanometers are possible, we have set LG =
32 nm in the simulations, and compared the results with the
experimental data for LG = 30 nm and 35 nm.

Comparison between experiments and simulations using the
standard calibration parameters (reproducing Takagi’s curves see
Section 3.4) are reported in Fig. 14. The threshold voltage and the
sub-threshold behavior are quite nicely reproduced without any
adjustment of the device parameters, meaning that the knowledge
of the doping profiles, gate length and gate stack is quite accurate.
However above threshold, at low as well as at large VDS, the simu-
lated currents are significantly larger than the experiments.

The main origin of this discrepancy is that the measured low-
field mobility is much lower than the universal curves, so that
the standard calibration overestimates the mobility. In fact, we
can see in Fig. 15 that the simulations using the standard calibra-
tion described in Section 3.4 (denoted by std.param.) provide a
much larger mobility than the measured one. In order to account
for this reduced mobility, some of the models have been re-
calibrated following different strategies. Results are denoted as
adj.param. in Fig. 15. In the UD-MSMC we have attributed the
mobility reduction to the presence of charge at the ITL/high-j
interface. A concentration of 2% 1014 cm"2 is required in order to
reproduce the experimental data. The WUT’s model reproduces
the experimental data by placing a concentration of charge of
8:8% 1012 cm"2 at the Si/ITL interface. In ETH-MC, the Fuchs factor
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Table 2
Position of the virtual source (xVS , where x ¼ 0 is the middle of the channel), average
velocity ðvVSÞ and inversion charge NVS at the virtual source. VGS=VDS=1 V

xVS vVS NVS xVS vVS NVS

nm 107 cm=s 1013 cm"2 nm 107 cm=s 1013 cm"2

Device 32 nm 32 nm 32 nm 22 nm 22 nm 22 nm

UD-MSMC "15.5 0.70 0.66 "9.9 0.82 0.75
ETH-MC "16.8 0.41 1.06 "11.2 0.47 1.24
BO-MC "16.8 0.50 1.0 "10.3 0.75 1.0
BO-QDD "14.7 0.47 0.76 "8.5 0.7 0.6
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Fig. 14. Comparison between measured I/V data for a 32 nm FDSOI device and the
predictions of some of the simulation models of this work.
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for surface roughness is modified from 20% to 65%. In Numonyx-
MC the local scattering by ionized impurities is artificially in-
creased in the channel to mimic the effect of charge in the gate
stack. On the other hand, BO-QDD includes a mobility model with
remote-phonons and remote-Coulomb scattering. Experimental
data are reproduced by assuming a charge concentration of
1:9% 1013 cm"2 at the ITL/high-j interface.

Clearly the difference in the models and in the model parame-
ters indicate that no consensus has been reached yet about the
explanation of the mobility in advanced devices with high-j
stacks. This further motivates our choice (in the previous sections)
of comparing the predictions of the transport models on idealized
devices, limiting our scattering models to much more mature and
established models of phonons, SR and II.

The new calibration helps improving the agreement between
simulated and experimental IDS curves, see Fig. 16, especially above
threshold at lowVDS, where the regime of transport is essentially the
same as in the long channel device used to extract the low-field
mobility of Fig. 15. In the case of high VDS, the spread between the
different models and between models and experiments is larger,
but still satisfactory. On the other hand, since all the simulators, ex-
cept the ETH-MC one, model the mobility reduction with respect to
the universal curve as an enhanced Coulomb scattering, the effect
below threshold (where the effect of carrier screening is weak) is
strong, and the agreement between experiments and simulations
is worst in Fig. 16 than in Fig. 14. Furthermore, it should be men-
tioned that the charges introduced as a source of remote-Coulomb
scattering were not treated in a self-consistent way, i.e. they were
not included in the computation of device electrostatics. In fact this
charge canbe in the formof dipoles of have different sign in different
position along the interface. Taking these charges into account in the
electrostatics would cause a significant threshold voltage shift.

In summary, we observe that while the overall agreement be-
tween experimental data and simulations in Fig. 16 is quite satis-
factory, many open issues remain in the understanding and
modeling of carrier transport in the presence of high-j dielectrics.

6. Conclusions

The extensive comparison presented in this work has interested
four DD simulators, six MC simulators, one NEGF solver and a mod-
el for the computation of the low-field mobility. The model predic-
tions tend to converge for the longer channel devices (especially
when considering the DD models), whereas the predictions of the
scaling trends of on-current improvement are quantitatively quite
different among the models. Comparison with ballistic NEGF re-
sults, points out that even with a limited number of scattering
mechanisms accounted for (II, phonons, SR) scattering still plays
a remarkable role in decananometric devices. The impact of scat-
tering on IDS becomes even larger when specific mechanisms
needed to reproduce the low-field mobility of advanced devices
(e.g. remote-charges in the high-j) are included in the models.

Direct comparison with experiments is difficult because of
many assumptions and uncertainties in the determination of many
device parameters. Nevertheless most models compare quite well
with the data. Unfortunately this result is achieved with quite dif-
ferent values of physical quantities such as the charge in the high-
j, a situation that emphasizes the need for a better understanding
of these materials.

Finally we emphasize that simulations of more mature technol-
ogies (e.g. 32 nm compared to 22 nm one) yields more similar pre-
dictions from the different simulators. Residual discrepancies may
be impossible to eliminate because of the intrinsically different
simplifications adopted by the models. Nevertheless these compar-
isons allow us to quantitatively assess the impact of model
assumptions on the results, hence to increase the degree of confi-
dence we expect from transport models.
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