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Schottky-Barrier Transistors

Paolo Michetti and Giuseppe Iannaccone, Senior Member, IEEE

Abstract—Nanotransistors typically operate in far-from-
equilibrium (FFE) conditions, which cannot be described neither
by drift diffusion nor by purely ballistic models. In carbon-based
nanotransistors, source and drain contacts are often characterized
by the formation of Schottky barriers (SBs), with strong influence
on transport. In this paper, we present a model for 1-D field-effect
transistors, taking into account on equal footing both SB contacts
and FFE transport regime. Intermediate transport is introduced
within the Büttiker’s probe approach to dissipative transport,
in which a nonballistic transistor is seen as a suitable series of
individually ballistic channels. Our model permits the study of the
interplay of SBs and ambipolar FFE transport and, in particular,
of the transition between SB- and dissipation-limited transports.

Index Terms—Ballistic transport, Büttiker probes, carbon
nanotubes (CNTs), carbon transistors, compact model, far-from-
equilibrium (FFE) transport, graphene, Schottky barrier (SB).

I. INTRODUCTION

S INCE THE isolation of graphene in sheets [1], [2], with
their exceptionally promising high mobility [3], graphene-

related materials have attracted much interest for their possible
application in nanoelectronic devices. In particular, semicon-
ducting carbon nanotubes (CNTs) [4] and single-layer or bi-
layer graphene nanoribbons (GNRs) [5] have been successfully
employed in quasi-1-D nanotransistors.

An important issue related to carbon-based channels is the
nature of metallic contact at the source and drain, which can
lead to different pinnings of the Fermi level and, consequently,
to the formation of ohmic or Schottky contacts [6], [7]. The
presence of Schottky-barrier (SB) contacts can have dramatic
effects on device performance, because charge injection is
subordinated to a tunneling process. However, in nanodevices
with reduced oxide thickness, tunneling phenomena at the
source and drain are favored, and while they often limit per-
formance in conventional transistors, their exploitation is at the
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core of the concept of tunneling field-effect transistors (FETs)
[8]. Indeed, theoretical investigations show that carbon-based
tunneling FETs, such as the ones based on bilayer graphene
[9] or epitaxial graphene on SiC substrates [10], can offer a
potential route for low-power electronics beyond CMOS.

Transport in nanotransistors is certainly far from equilibrium
but is still not fully ballistic, and currents are much lower than
those predicted by ballistic models [11]. While it is perfectly
clear that inelastic scattering may arise from the interaction
of carriers with phonons and impurities, it is rather complex
to take into account microscopically its effect on transport. A
powerful phenomenological attempt to deal with carrier relax-
ation and decoherence was based on the Büttiker virtual probe
approach [12], [13], in which inelastic scattering is thought
as localized in special points, spaced by a length defined as
“mean free path.” The Büttiker approach was also introduced
in microscopical models based on tight-binding Hamiltonians
[14], and recently extended to deal, via a quantum Langevin
approach, with 1-D conductors [15]. In [16], the Büttiker probe
approach to inelastic scattering was employed in a simulation,
based on the nonequilibrium Green’s function formalism, of a
nonballistic silicon nanowire transistor.

A fully microscopical analysis of inelastic scattering due
to specific mechanisms such as phonon scattering, with the
nonequilibrium Green’s functions approach, has also been ad-
dressed by adding a proper self energy correction on a site-
representation propagating Hamiltonian by Jin et al. [17] and
Gilbert et al. [18], [19].

As far as analytical models are concerned, transport in quasi-
1-D FETs is generally treated as purely ballistic or with a
drift-diffusion assumption as in [20]–[22]. A largely invoked
approach to treat partially ballistic transport, including the
effects of backscattering, was proposed by Lundstrom [23].
This approach, which is easily included as a correction to
ballistic models, has the merit of offering a very simple and
synthetic picture but does not allow a full description of the
seamless transition from ballistic to quasi-equilibrium drift-
diffusion transport. Recently, a rigorous semianalytical model
based on the Büttiker virtual probe approach [12], [13] has
been conceived, in which a nonballistic transistor is seen as a
suitable chain of N ballistic channels, where N is the ratio of
the channel length to the mean free path, or, equivalently, as a
series of a drift-diffusion FET and a ballistic FET [24]–[26].

In this paper, we propose a semianalytical model based on
the virtual probe approach, which describes 1-D FETs, treating
on equal footing SB contacts and far-from-equilibrium (FFE)
transport conditions. In Section II, we summarize the general
analytical description of GNR subbands, density of states,

0018-9383/$26.00 © 2010 IEEE
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Fig. 1. Sketch of a DG-GNR FET, considered as an example for the applica-
tion of our model.

and equilibrium charge density, extensible also to the CNT
case. In Section III, we present a WKB approximation of the
tunneling probability through SB contacts, yielding analytical
expressions for the transmission based on two different levels
of approximation for the energy dispersion curves of GNRs (or
CNTs). In Section IV, a model for a single ballistic transistor
with SB contacts is presented, compared with the data from
numerical simulations. In Section V, we propose a compact
model, based on the Büttiker virtual probe approach that is able
to deal with both intermediate (I) transport and SB contacts, and
use it to study the interplay of SB and dissipative transport.

II. DISPERSION RELATION AND DENSITY OF STATES

The dispersion curve of an armchair GNR (A-GNR) with N
dimer lines can be obtained analytically by cutting techniques,
analogous to that used for CNTs in [27], from the 2-D graphene
tight-binding dispersion. The subband dispersion curves corre-
spond to 1-D segments of the graphene Brillouin zone with the
confined wavevector quantized as kα = πα/(N + 1), with α =
1, 2, . . . , N . The dispersion curve of the subband α, referred to
as midgap, is

Eα(k) = ±V

{
1 + 4 cos

√
3ak

2
Aα + 4A2

α

}1/2

(1)

with Aα = cos(πα/(N + 1)), and V = 2.7 eV is the tight-
binding hopping parameter. We note here that a dispersion
relation that is totally analogous to (1) applies to zigzag (N, 0)
CNT, with the only difference that, in the place of Aα, we have
to use ACNT

α = cos(πα/N), where α is the subband index of
CNTs [28]. Therefore, much of the results for GNRs obtained
here and in the succeeding sections of this paper, with the
exclusion of the edge corrections, can be directly generalized
to the zigzag CNT case by properly modifying the values
of parameters accounting for the screening and geometrical
properties (Fig. 1).

The edge of the αth subband Eα(0) is expressed as

Eα(0) = ±V (1 + 2Aα). (2)

Let us note that the lowest lying subband is given by the value
of α for which Aα + (1/2) is minimum. The edges of the

Fig. 2. Comparison of the subbands of an A-GNR with 12 dimer lines
between a numerical tight-binding calculation and our analytical result with
edge corrections. Valence bands are symmetrical.

nanoribbon are laterally exposed to vacuum and experience a
different chemical environment; therefore, the hopping param-
eter between carbon atoms at the edges tends to be slightly
different. We can, at least partially, account for the presence
of edges via a perturbative approach to the first order [29].
The perturbation theory to the first order leads to the following
eigenenergy corrections:

δEα(k) = (±)αHed
α,α

=(±)α
4ν

N + 1
sin2

(
απ

N + 1

)
cos(kac−c) (3)

with ν = 0.12 eV as the energy correction of the hopping
parameter at the edges in the tight-binding Hamiltonian. The
correction has a positive or negative contribution, depending
on the wavefunction parity with respect to the two asymmetric
carbon atoms, which are connected by the edges. Therefore, if
Aα ≥ −(1/2), we have a positive contribution (±)α = 1, oth-
erwise a negative one (±)α = −1. The edge-corrected energy
dispersion relation, which we will refer to as the full-band (FB)
approximation when applied to FET modeling, is therefore

Ec
α(k) = Eα(k) + δEα(k). (4)

The comparison between numerical tight-binding calculations,
with edge effects taken into account, and the analytical result
with perturbative corrections, for an A-GNR of 12 dimer lines,
is shown in Fig. 2. The agreement is very good, particularly at
k = 0, where (4) reproduces the results of [29]. For simplicity,
we define here the band edges as εα = Ec

α(0).

A. Approximated Expressions

In modeling nanotransistors, only the lowest laying subbands
matter, in which the relevant transport phenomena take place.
For these lowest lying subbands, often an effective-mass (EM)
approximation is invoked

EEM
α (k) = εα +

!2k2

2Mα
(5)
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Fig. 3. Energy dispersion curve, and the corresponding density of states, of
the lowest conduction subband of an A-GNR with 12 dimer lines. A numerical
tight-binding result is compared with our FB analytical result and with EM and
I approximate dispersions. In the energy range considered here, the agreement
between numerical, FB, and I approximations is excellent.

in this case, the following EM for the αth mode can be
employed

Mα = −2
3

!2εα

a2V 2Aα
. (6)

The DOS in EM approximation is given by

DEM
α (E) =

2
π!

√
Mα

2E
(7)

with E expressing the “kinetic energy,” i.e., the energy calcu-
lated with respect to the band edge εα.

The EM approximation is rather crude, and the following I
approximation, between the FB and the EM, can be derived
by expanding to the second order in k the energy squared
of (4)

EI
α(k) = ±

√

ε2
α +

εα!2k2

Mα
(8)

for which the DOS is

DI
α(E) =

2(εα + E)
π!

√
Mα

εαE (E + 2εα)
. (9)

In Fig. 3, we compare the lowest band dispersion curve and
the corresponding DOS for a GNR with 12 dimer lines. Both
the FB and I approximations reproduce numerical tight-binding
calculations quite well and give similar DOS; of course, the
I dispersion is only accurate for energies E $ V . The EM
approximation instead remains quite accurate only for about
E < 0.1 eV.

B. Carrier Density

Carrier density affects both electrostatics and transport prop-
erties. Here, we develop a similar analysis to what was done in

[28] for CNTs. The electron carrier density per subband can be
expressed as

nα =

εtop
α −εα∫

0

f

(
E + εα − qφc − µ

kT

)
Dα(E) dE (10)

where µ is the Fermi level, f(x) = (1 + expx)−1 is the
Fermi–Dirac distribution, and εtop

α is the top edge of the αth
subband, which, for most purposes, can be taken as ∞ due
to the finite extension of f(E). φc is the electrostatic po-
tential in the device, which rigidly shifts the levels. Because
the nonnegligible contribution to (10) comes from states near
εα, we can use the I expression for the DOS DI

α(E). If we
consider a nondegenerate situation (εα − 3kT > µ), typical of
subthreshold regimes in FETs, we obtain

nα =
2
√

Mα(εα−qφc)
π! eβ(qφc+µ)

∞∫

1

e−β(εα−qφc)z z√
z2−1

dz

(11)

with z = E/εα and β = (kT )−1. With a partial integration and
recognizing the modified Bessel function of the second kind
K1, the charge density can be expressed as

nα =
2
π!

√
Mαεαeβ(qφc+µ)K1(βεα). (12)

In order to give an estimation of the Bessel function K1 which
has no closed form, we can adopt the approximation [28]

K1(x) ≈
K1/2(x)+K3/2(x)

2
=

√
π

2x3

1+2x

2
e−x (13)

arriving in the end to express the charge density as

n = Nce
−β(εα−qφc−EF ) (14)

Nc =

√
Mα

2πβ3

1 + 2βεα

!εα
(15)

with essentially the same form of 3-D bulk semiconductors.

III. TUNNELING OF SBs

Our aim is to provide an analytical description of the tun-
neling through SB contacts. The first step is to model in the
simplest way the potential decay occurring near the source
and drain contacts. The potential inside a transistor channel is
described by the a 3-D Poisson equation

∇2φ((r) = −ρ((r)
ε

(16)

together with the boundary conditions enforced by voltages Vs,
Vd, and Vg at the source, drain, and gate leads, respectively.
In the evanescent mode analysis approach, the electrostatic
potential inside a nanotransistor φ((r) is thought as the sum of
a long-channel solution φL((r), which satisfies the vertical elec-
trostatics, plus a short-channel solution φ∗((r), called evanescent
mode, responsible of the potential variation along the chan-
nel [30]. The short-channel solution is obtained, solving the

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on July 26,2010 at 07:52:31 UTC from IEEE Xplore.  Restrictions apply. 



MICHETTI AND IANNACCONE: ANALYTICAL MODEL OF CARBON-BASED SB TRANSISTORS 1619

Laplace equation for the device with an adequate expansion
in harmonic functions. As a matter of fact, the short-channel
solution near the source contact results in an exponential profile

φ∗((r) ∝ R((r‖)e−z/λ (17)

where R((r‖) describes the solution in the channel cross section
and λ comes to be a natural scale length for the potential
variation in the device. The actual value of λ depends on
the details of the device geometry; however, in a double-gate
(DG) configuration, and considering that, in general, in carbon-
based FET, the oxide thickness is significantly larger than the
channel thickness, the asymptotic value λ = (2tox + tch)/π
can be assumed. In the case of a cylindrical GAA-CNT FET,
an explicit calculation of λ via evanescent mode analysis has
been performed in [31].

We follow this line and assume that the channel potential
rigidly shifts the confinement eigenvalues εα, where α runs
on the different subbands. Now, we are interested only in the
potential inside the restricted zone of the graphene channel
φc(z), in which it can be assumed as a constant (which is
strictly true in subthreshold regimes), and we consider its
variation only along the channel direction. The long-channel
solution inside the channel is reduced to φL((r) ≈ φc, where φc

is solely imposed by the vertical electrostatics, while the short-
channel solution has the form (17). Therefore, the potential in
the channel φc(z) can be expressed as

φc(z) = φc +
As

q
e−z/λ (18)

with φc = φ(∞) fixed by the vertical electrostatics and As

imposed by the boundary condition at the SB contact As =
E(s)

SB − εL + qφc, where L refers to the lowest lying subband,
due to the Fermi level pinning at the metal/semiconductor
interface. E(s)

SB is the SB height on the first conduction subband
with respect to the source Fermi level. The charge injected
from the source with energy lower than the barrier has to
tunnel in order to reach the channel. We need to calculate
the transmission through an exponential decaying barrier of
the kind

ESB(z) = As e−z/λ (19)

with the height As dependent on the electrostatic potential
φc. We note however that if the band bending exceeds the
energy gap 2εα, a carrier with energy 0 < E < As − 2εα will
experience an SB of a height As = E + 2εα.

In order to estimate the behavior of a nanotransistor, it is
essential to accurately describe the tunneling phenomena, both
in traditional FETs and in TFETs. In this section, we compare
the tunneling calculated with WKB approximation in an FB
approach (FB-WKB), within the EM approach (EM-WKB),
and I approximation (I-WKB). FB-WKB is more complex to
implement and requires a numerical solution of the integral

ln (T (E)) = −2

z2∫

z1

I [kz(zE)] dz. (20)

While for the other two, an analytical expression for the tunnel-
ing T (E) can be obtained.

A. EM-WKB Approximation

The transmission coefficient obtained via the WKB approxi-
mation is given as

T (E)=
e
−2

∫ z2
z1

√
2mα/!2(ESB(z)−E)dz

, E < As

1, E ≥ As
(21)

where z1 and z2 are the classical turning points

z1 = 0 z2 = −λ ln
[

E

As

]
. (22)

The transmission coefficient can be analytically calculated in

lnT (E) = −4λ

√
mα(As − E)

!2

×
[
1−

√
E

As−E
tan−1

(√
As − E

E

)]
. (23)

B. I-WKB Approximation

Let us consider a dispersion curve of the kind (8). The turning
points with a barrier like (19) are the same as (22), but now,
under the barrier, the imaginary part of the wave vector as a
function of energy is given by

I[kz, E] =
√

Mα

!2εα

√
a2 −

(
b − e−

z
λ

)2 (24)

with

a =
εα

As
b = a +

E

As
.

The integration (20), for E < As, leads to the WKB tunneling
probability

lnT (E) =
2Asλ

√
Mα√

!2εα

[
−b

(
π

2
− arctan

b − 1
R1

)
− R1

+ R2

(
π − arctan

R1R2

a2 − b2 + b

)]

(25)

where we introduced the abbreviations

R1 =
√

a2 − (b − 1)2 R2 =
√

b2 − a2.

C. FB-WKB Approximation

For an A-GNR, subband dispersion curves are in the form
(1), from which we can express the wave vector as a function
of energy as

k =
2

a
√

3
arccos x (26)
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Fig. 4. Transmission probability for an electron in the lowest laying subbands
of an A-GNR with 12 dimer lines as a function of its relative energy χ
with respect to the barrier height. The FB result comes from the numerical
integration of (29), while we have analytical transmission probability in I (25)
and EM (23) approximations.

with the substitution u = −z/λ and normalizing all quantities
to A, x given by

x =

(
E
As

+ δ − eu
)2

− α2

ν

where we introduced

δ =
εα

As
α =

(
1 + 4A2

α

)
V 2

A2
s

ν =
4AαV 2

A2
s

. (27)

In the integration domain of (20), the argument x of the inverse
cosine function has a module larger than one, and therefore

I(k) = − 2

a
√

3
ln

∣∣∣z +
√

z2 + 1
∣∣∣ (28)

leading to the WKB tunneling probability

lnT (E) = − 4λ

a
√

3

lnE/As∫

0

ln
∣∣∣x +

√
x2 + 1

∣∣∣ du. (29)

In Fig. 4, we compare the tunneling coefficients, calculated
with the EM-, I-, and FB-WKB approaches, for SBs of height
0.5 and 1 eV, and for a λ typical of DG A-GNR with tox =
1.5 and 4 nm. Essentially, the I approximation completely
reproduces the FB tunneling probability, while a significant
deviation is observed with the EM-WKB approximation for
E < 0.5As. Therefore, the I approximation seems an optimal
approximation for compact models in order to reduce the
computational times, retaining high accuracy.

IV. SB BALLISTIC FET

We consider here a ballistic transistor with SB contacts at
the source and drain, as shown in Fig. 5. As usual in compact
models, we assume a complete phase randomization along the
channel, neglecting phase resonances in the transmission prob-
ability of the two tunneling barriers, while multiple reflection

Fig. 5. Conduction band edge profile of an SB nanoscale FET. The thermionic
and tunneling energy ranges are shown.

events are taken into account. Between two tunneling barriers,
the forward and backward distribution functions are modified
by the multiple elastic scattering [31], [32]. The overall mobile
charge, given by the sum of forward- and backward-going
charge carriers in the channel, can be expressed as

Qi

q
=

∑

α

εtop
α −εα∫

0

dEDα(E)
{

Ts(2 − Td)
T ∗ f

(
ηi

α,s

)

+
Td(2 − Ts)

T ∗ f
(
ηi

α,d

)}
(30)

with i = e, h for the electron and hole charge, where

ηe
α,s(d) =

E − qφc + εα − µs(d)

kbT
(31)

ηh
α,s(d) = µs(d) − E + qφc − εαkbT (32)

T ∗ = Ts + Td − TsTd (33)

where Ts and Td are the tunneling coefficients at the source
and drain, respectively, depending on both energy and chan-
nel potential. In order to compute the channel potential φc,
and, through it, the subband energies, the total mobile charge
Q = Qh − Qe must be equal to the charge induced by the
electrostatic coupling of channel with gate, source, and drain
through capacitances Cg , Cs, and Cd, respectively

Q(φc) = −
∑

i=g,s,d

Ci(Vi − VFB,i − φc) (34)

where VFB,i = φi − χg is the flatband voltage, given by the
difference between the contact workfunction and the graphene
electron affinity.

The current is obtained with the Landauer–Büttiker for-
malism, which, accounting for the tunneling, takes the follow-
ing form:

Ii(φc)=
q

π!
∑

α

Etop
α −εα∫

0

TsTd

T ∗

[
f

(
ηi

α,s

)
−f

(
ηi

α,d

)]
dE (35)

with i = e, h accounting for the current of electrons and holes,
and the total current given by I = Ie − Ih. We note that (30)
and (35) include both tunneling and thermionic contributions.
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Fig. 6. Comparison between our model and numerical simulations from [33].
The (a) transfer characteristics at Vds = 0.5 V and (b) output characteristics at
Vg = 0.75 V of a ballistic DG A-GNR FET, with ohmic and SB contacts of
height Eg/2 ≈ 0.3 eV, are shown. Assuming a GNR thickness of about 1 nm,
we obtain λ ≈ 1.3 nm.

We apply our model to the case of a DG A-GNR transistor
(DG A-GNR FET) with both ohmic and SB contacts. In Fig. 6,
we compare the (a) transfer and (b) output characteristics of
a ballistic A-GNR FET, obtained with our model and with
numerical simulations based on the nonequilibrium Green’s
function formalism in [33]. The SiO2 gate oxide thickness is
1.5 nm, and the A-GNR lattice is characterized by 12 dimer
lines, which correspond to a width of 1.35 nm and a bandgap
of 0.6 eV. We employed here the I analytical description of the
GNR subbands and density of states (9). The source and drain
capacitances Cs and Cd are introduced because of the short-
channel nature of the GNR simulated in [33] and are fixed,
with respect to the gate capacitance Cg = 1.1 × 10−10 F/m,
to Cs = Cd = 0.1Cg . The agreement between the numerical
simulations and our compact model, for both curves (Fig. 6)
with ohmic and SB contacts, is very good, demonstrating that
the effects of SBs are well accounted for.

V. SB TRANSISTORS IN I TRANSPORT REGIME

To describe dissipative transport, we follow the approach
developed in [24] and [25] for a 2-D MOSFET for the nonde-
generate and degenerate cases, and in [26] for quasi-1-D FETs.
Such treatment is here expanded to include ambipolar devices.
We recall that, within the Büttiker probe approach, inelastic
scattering is thought as localized in special points, spaced by
a length defined as “mean free path” .. The virtual probes act
as localized reservoirs along the channel, in which carriers are
fully thermalized in equilibrium with the probe quasi-Fermi
energy µn. The transport from one virtual probe to the next is
considered purely ballistic. We have a drift-diffusion transistor
when the channel length is much longer than the mean free
path, which, from our point of view, is equivalent to having a
long enough chain of ballistic transistors, as rigorously shown
in [24]. On the contrary, when the number of internal contacts
is small, the transport is FFE and is fully ballistic in the limit
N = 1.

Fig. 7. Chain of N ballistic transistors with SB contacts at the source and
drain (first and last contacts). As explained in the text, the chain of ballistic
transistors can be described as the series made by a central DD section
accounting for dissipative transport in the N − 2 internal nodes and by head
and tail ballistic transistors accounting for the SB contacts with source and
drain.

A transistor with SB contacts in the FFE transport regime is
therefore modeled as a series of individually ballistic channels,
connected by fully thermalizing virtual probes placed at xn =
n. with n = 1, . . . , N − 1, with electrochemical potential µn.
The head and tail of the series are connected to the source and
drain through SB contacts, as shown in Fig. 7, and boundaries
are fixed as µ0 = µs and µN = µd. In the nth ballistic channel,
µn−1 and µn act as source and drain, and by simultaneously
solving (30) and (34), we can fix the channel potential φ(n)

c .
In the same manner, the current in the nth channel is obtained
with (35), imposing µn−1 and µn as source and drain Fermi
levels. Since the current In in any n = 1, . . . , N FET must be
equal to Ids, we have N equations determining the local Fermi
energies µn. We note that a distinction between ballistic internal
channels (B) and boundary channels with source (Bs) and
drain (Bd) can be made. In fact, the first and the last ballistic
channels are characterized by SB contacts with metallic source
and drain, while internal channels, in the region between the
fictitious virtual probes, can be treated as ohmic transistors.
The numerical solution of the complete chain of N elements
(2 for the boundary kind and N − 2 for the internal kind) will
be addressed as the B(N) model.

Now, we note that, for the internal part of the chain, the
analysis developed in [26] applies. In particular, it has been
shown that the current in an ohmic-contact ballistic chain of N
elements, after a linearization procedure, can be arranged into
a drift-diffusion-like form (which we refer to as the DD(N)
model) in which the current is calculated through the following
formula:

Ids =
q2Γ(1).

π!L

∑

α

Vd∫

Vs

{
F−1 (ηe

α[V ])−F−1

(
ηh

α[V ]
)}

dV (36)

where F−1(x) is the Fermi–Dirac integral of order −1, Γ is the
gamma function, and

ηe
α = (qφc − qV − εα)

/
kT (37)

ηh
α = (−qφc + qV + εα)

/
kT. (38)
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Fig. 8. Transfer characteristics of a ballistic chain made of a series of N DG
GNR FETs, with N = 1, 2, 5 and Vds = 0.5 V, calculated with our model. In
the inset, the Ion/Ioff ratio for V (off)

g = 0.25 V and V (on)
g = 0.75 V as a

function of N .

We note that η not only directly depends on V but also indi-
rectly through φc, which is self-consistently imposed by the
linearized vertical electrostatics

Qm = Cg (Vg − VFB − φc[V ])

Qm =− qΓ(1/2)
π

∑

α

√
2kbTmα

!2

{
F1/2(ηe

α[V ])−F1/2

(
ηh

α[V ]
)}

.

The linearized DD model (36) has also the advantage of
dealing with noninteger N = L/. and is therefore more flexible
than the ballistic chain itself. As noted in [26], (36) can be
rearranged in a local form, analogous to a DD equation Iα =
µαQα(dV/dx), where the degenerate mobility (we consider
now a monopolar regime) is given by

µe
α =

qνα.

2kT

F−1 [ηe
α]

F−1/2 [ηe
α]

(39)

with να =
√

2kT/πmα as the mean carrier velocity. This
expression gives us a link between N = L/. and the mobility.

We can now model an SB transistor in I transport regime
as a series of Bs − DD(N) − Bs segments, with two nodes
between the boundary channels and the internal segment, char-
acterized by electrochemical potentials that can be fixed by
exploiting the current continuity in the device. We will refer
to this macromodel as the BDDB(N) model. This com-
pact model permits one to analyze both the presence of SB
contacts and FFE transport condition, while keeping low the
computational burden, particularly with respect to numerical
simulations including dissipation.

We now analyze the effects of inelastic scattering on the
performance of a DG A-GNR FET. In nonballistic transport
(increasing N ), the transfer characteristics (Fig. 8) vertically
shift, in a semilog plot, as expected, due to mobility reduc-
tion. It is interesting to note that the effect is more marked
in the subthreshold region and, consequently, an increase of
the Ion/Ioff ratio as a function of N is observed, as shown
in the inset. In ballistic models with positive Vds, in the
subthreshold regime, tunneling from the drain leads to hole

Fig. 9. Output characteristics and differential conductance of a GNR ballistic
chain made of N DG GNR FETs, with N = 1, 2, 5, 10, 20. Three different
pinnings of the SB with respect to the conduction band are considered: Without
SB (SB = 0) and with SBs of Eg/4 and Eg/2. The details of the device are
the same as those in Fig. 6, except for tox = 5 nm, for which all the features
due to the SB are enhanced due to the thicker barrier.

accumulation under the channel, which increases the quan-
tum capacitance and reduces the control over channel. Subse-
quently, a larger subthreshold swing and a lower Ion/Ioff are
obtained.

An accurate analysis of the SB effects on the output char-
acteristics can be performed by calculating the differential
conductance g = ∂Ids/∂Vds. In Fig. 9, we compare the output
characteristics and the differential conductance for a device
with tox = 5 nm with an SB height SB = 0, 0.25, 0.5 Eg . Note
that the presence of SB contacts is more relevant in transistors
with a looser vertical confinement, where the tunneling barriers
are thicker. We observe that, in samples with SB = 0 eV,
the output characteristics concavity is always negative, and the
differential conductance is monotonously decreasing with Vds.
If the SB height is finite, the differential conductance acquires a
nonmonotonous behavior, which well describes the “S-shaped”
concavity change of the characteristics curves before reaching
saturation, particularly evident in thicker SB devices. It is
interesting to note that, apart from a reduction of the maximum
saturation current, larger ballistic chains (larger N ), in which
higher inelastic scattering is active, lead to smoothening of the
nonmonotonous dependence of g on Vds. With this fact, we
can recognize a gradual transition between devices in which
the characteristics are dominated by SB contacts and devices in
which inelastic relaxation is predominant.

In electron–hole symmetrical materials as undoped GNRs
or CNTs, the relative SB height with respect to the bandgap
determines the position of the minimum of transfer char-
acteristics, and it influences their shape and symmetry (see
Fig. 10). An SB of height Eg/2 preserves the band-structure
electron–hole symmetry and therefore results in transfer char-
acteristics which span symmetrically from the current mini-
mum OFF state (placed at Vg = Vds/2). Curves calculated with
reduced SB height for electrons (for Eg/4 and 0) show a grow-
ing asymmetry, with weaker hole currents and larger electron
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Fig. 10. Transfer characteristics of GNR devices increasing tox = 1, 3, 5 nm,
calculated for Vds = 0.5 V. Ballistic chains of N = 1, 2, 5, 20 are drawn;
devices without SB (SB = 0) and with SBs of Eg/4 and Eg/2 are shown.
Arrows indicating the shift of the transfer characteristics curves with N are
also added as a guide for the eyes.

currents, together with a shift of the transfer characteristic
minimum to lower values of Vg . This phenomenon is prominent
in thicker SB devices, such as the tox = 5 nm FET, but well
observable also in a tox = 1 nm device. The increase of the
lateral confinement leads in fact to an almost linear increase of
the SB thickness, and therefore, all tunneling processes become
harder. As expected, if we increase the dissipative phenomena
(increasing N ), a reduction of the current is observed. More
interestingly, while the SB = Eg/2 curves vertically shift, as
pointed out with the arrows in Fig. 10, while the shift of the
other curves is diagonal; note, in fact, the horizontal shift of
their minima with N . Moreover, by increasing N , the minima
seem to converge toward the value Vg = Vds/2, which is typical
of a symmetrical ambipolar device. This is yet another signature
of the growing importance of inelastic transport over the SB
contacts. Therefore, for sufficiently well-confined FET, we can
expect in quasi-ballistic GNT/CNT devices to clearly observe
an SB behavior, which becomes more and more subtle in
dissipative regimes. To quantify the relative importance of the
SB in determining the symmetry of the transfer characteristics,
we made the following physical estimation: SB = 0.5Eg cor-
responds to the symmetrical case; therefore, if we impose a
different SB, the change in the conductance will be exponential
in the SB difference δESB as

δgSB ∝ exp
{
−2tox

π! (2mδESB)1/2

}
(40)

as can be obtained estimating the differential conductance of
a device with an SB source contact at the source Fermi level.
This quantity is, in fact, dominated by the tunneling coefficient
(23). This difference in the conductance is relevant as long as
it is greater than the conductance due to the DD(N) chain. We
obtain

γ =
δgSB

gN
≈ N exp

{
−tox ∗ 2

π! (2mδESB)1/2

}
. (41)

Fig. 11. Ballistic index of a ballistic chain of N elementary GNR FETs with
SB is varied from 0 to Eg/2 as a function of N . The source–drain voltage is
set to Vds = 0.1 and 0.5 V for Vg = 0.75 V.

Employing this formula, we can calculate the N = Ns cor-
responding to γ = 1 for different SB values and oxide thick-
nesses, as shown in the following table:

Ns tox = 1 tox = 3 tox = 5 (nm)

SB = 0 4 70 103

SB = 0.25Eg 7 450 104 .

Ns gives a rough estimation to the number of nodes (i.e., L/.
ratio) needed to make the transfer characteristics symmetrical,
in spite of the presence of an SB. As can be observed, compar-
ing these values with the behavior of the curves in Fig. 10, the
tox = 1 nm curves with SB = 5 and 10, respectively, for SB =
0.25Eg and 0 are quite symmetrical in accordance with Ns = 4
and Ns = 7 found by our calculation. The minimum of the
curve N = 10 with SB = 0.25Eg comes near the symmetrical
values, but still misses it, being our estimation Ns = 70. Other
curves are highly asymmetric, being N $ Ns.

A typical parameter used to characterize the transport regime
in quasi-ballistic devices is the ballisticity index Bindex = I/I1,
which is the ratio of the actual current to the current corre-
sponding to an analogous device in a purely ballistic transport
regime (N = 1). In Fig. 11, we analyze the role of the SB
contacts in determining the ballisticity index as a function
of N and, therefore, as a function of the degree of inelastic
relaxation. In general, to lower SB heights corresponds to a
faster variation of Bindex with N , with a sudden drop of the
ballisticity as a function of the number of nodes, after which
a slower decrease is observed. SBs affect, in particular, the
ballisticity index calculated for lower Vds, due to the concavity
of the output characteristics, while larger source–drain voltages
reduce the relative importance of SB with respect to inelastic
mechanisms. Calculations with tox = 5 nm reveal the increased
importance of SB contacts and reflect the presence of the
inflection in the output characteristics, with a concavity change
before saturation. In particular, for higher value of the SB, we
observe a slower dependence of the Bindex on N , because the
current is calculated in a bias point of the characteristic curve
of strong “s” curvature. Physically, it means that the current
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flowing in the device is mostly limited by the injection through
the tunneling barriers.

VI. CONCLUSION

We have presented a semianalytical model dealing with
ambipolar 1-D SB transistors in I transport regimes between
fully ballistic and quasi-equilibrium, i.e., governed by the drift-
diffusion model. We have introduced simplified, but accurate,
descriptions of the SB profiles and of the electrostatics, and
analytical approximations of the tunneling coefficients of the
SBs. We have demonstrated that an SB transistor can be mod-
eled as three transistors in series, with common gate voltage.
The central one is a drift-diffusion transistor, with mobility
dependent on the degree of degeneracy of the 1-D carrier
gas. The other two transistors are ballistic FETs with an SB
contact corresponding to the external actual contacts (source or
drain). In the case of ballistic transport, our model allows us to
reproduce the results of a 3-D numerical Poisson–Schroedinger
simulator. In the case of very long channel, with respect to the
mean free path, current is limited by the central drift-diffusion
transistor. The model allows one very directly to investigate
the transition from barrier- to channel-limited transport. Our
semianalytical model represents an accurate and simple way to
gain physical insights into the behavior of nanoscale transistors
with SB contacts, including most the relevant physics at a very
low computational cost. We also developed an open-version
tool, which is available on the Nanohub site under the name
FFETtool [34], solving the model discussed in this paper,
restricted to the EM approximation.
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