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ABSTRACT The manipulation of the electron spin degree of freedom is at the core of the spintronics paradigm, which offers the
perspective of reduced power consumption, enabled by the decoupling of information processing from net charge transfer. Spintronics
also offers the possibility of devising hybrid devices able to perform logic, communication, and storage operations. Graphene, with
its potentially long spin-coherence length, is a promising material for spin-encoded information transport. However, the small
spin-orbit interaction is also a limitation for the design of conventional devices based on the canonical Datta-Das spin field-effect
transistors. An alternative solution can be found in magnetic doping of graphene or, as discussed in the present work, in exploiting
the proximity effect between graphene and ferromagnetic oxides (FOs). Graphene in proximity to FO experiences an exchange
proximity interaction, that acts as an effective Zeeman field for electrons in graphene, inducing a spin precession around the
magnetization axis of the FO. Here we show that in an appropriately designed double-gate field-effect transistor, with a bilayer graphene
channel and FO used as a gate dielectric, spin-precession of carriers can be turned ON and OFF with the application of a differential
voltage to the gates. This feature is directly probed in the spin-resolved conductance of the bilayer.
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Graphene has attracted much attention since its first
experimental fabrication,1 due to its exceptional elec-
tronic properties linked to the Dirac physics of its low-

energy quasi-particles.2 Thanks to its extremely high mobility,3

graphene is also a promising material for nanoelectronics,
where however the presence of a semiconducting gap is
required. One-dimensional graphene-related structures like
nanoribbons4 and carbon nanotubes5 have been employed
successfully for nanoelectronic devices, but their practical
applications are limited by the need of single-atom precision
in the definition of their transversal width and radius, respec-
tively. Carbon-based materials like epitaxial graphene on SiC6

and bilayer graphene7 have been shown to be promising for
the realization of tunneling field-effect transistors (FETs), while
the gap is not sufficient for conventional FETs.8,9

Spin-orbit coupling plays a crucial role in spintronics,
providing a way to manipulate electron spin by means of
an external field. This is at the heart of most of proposed
spintronic devices, such as the Datta-Das spin-FET.10 How-
ever, theoretical studies have shown that spin-orbit cou-
pling in graphene is extremely small.11,12 Therefore, con-
ventional spintronics mechanisms are not applicable to
graphene. On the other hand, graphene is attractive for
spintronics because of its long spin-coherence time.13 More-
over, simulations show that magnetic doping14 in graphene,
or edge functionalization in GNRs,15,16 lead to spin-splitted

bands and potentially to a semimetal dispersion relation,
particularly attractive for spintronic applications.17

An alternative approach can come from the exploitation
of the interfacial proximity with a ferromagnetic oxide (FO).
Indeeed, it has been proposed that a spin splitting (acting
as an effective Zeeman field) can arise in graphene due to
exchange proximity interaction (EPI) between electrons in
graphene and localized electrons in a FO layer adjacent to
the graphene layer.18,19 The effective Zeeman splitting
(which has been estimated to be of the order of 5 meV19)
acts on the spin of graphene carriers inducing a precession
around the magnetization axis of the FO. The same mech-
anism was proposed for bilayer graphene, and the modifica-
tion of the electronic structure and of the magnetoresistance
as a function of relative angle between the magnetization
axes of the upper and lower FO spacers has been investi-
gated.20 The spin filtering properties of bilayer graphene with
multiple magnetic barriers with EPI were also investigated
in ref.21 However, the control on the spin-transport proper-
ties exerted by an electric field, driven by gates, has not yet
been the subject of investigation.

It is possible to induce an energy gap in bilayer graphene
by applying an electric field perpendicular to the graphene
plane.22-25 For small kinetic energy, first valence and conduc-
tion band wave functions are driven toward different planes
of the bilayer by the applied field. This means that electrons in
the first valence and conduction band have different prob-
abilities to be found on the upper and lower plane. Therefore,
we can devise a way to tune the spin-rotation of carriers in the
bilayer graphene by reversing the gate voltage.
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We consider a double gate bilayer graphene FET where
a FO is used as the insulating layer between the bilayer
graphene channel and the top gate, while an ordinary oxide
(OO) is used as insulating layer for the bottom gate, as shown
in Figure 1. EPI interaction will mainly affect electrons on
the upper graphene layer. By applying a direct or inverse
differential voltage between the gates, we determine whether
conduction electrons do or do not feel the EPI interaction,
and accordingly the associated wave functions are quasi-
localized on the upper or on the lower plane. Consequently,
we are able to switch on or off spin precession.

Model. We discuss here in very generic terms the differ-
ence between an insulating material made of an ordinary
oxide and of a FO. In both materials electrons reside in
similarly localized wave functions, as is proper for an
insulating material, but in a FO they will be also character-
ized by a majority spin component. If we place a graphene
sheet in proximity to a FO, rather than to a OO, in general
we can expect a similar contribution for the direct Coulomb
interaction between electrons in graphene and in the oxide,
but a completely different contribution from the exchange
interaction. Indeed, the exchange interaction requires “ex-
changed” electrons to have the same spin orientation, and
therefore graphene electrons will feel a very different effec-
tive EPI for majority and minority spin components with
respect to the FO. Moreover, while the direct Coulomb
interaction is long ranged, EPI requires an overlap of the
wave functions of “exchanged” particles. For this reason EPI
interaction, as pointed out in ref 20, is essentially limited to
the graphene layer placed in direct proximity to the FO, and
it is negligible on more distant layers.

We assume here the simplest situation, in which a thin
FO layer is deposited between the upper graphene plane and
the top gate, with magnetization Mb , and an OO layer is
instead used as insulator between the lower graphene layer
and the back gate (Figure 1). The electronic states of bilayer
graphene can be described, near the K point, by the follow-
ing Hamiltonian26

where U0 ) -q(VU + VL)/2 and ∆ ) -q(VU - VL), with VU

and VL the upper and lower layer potential, respectively, and
q is the value of the absolute elementary charge. In the
following, let us denote with the index U the variables
relating to the upper (U) layer, and with the index L those
relating to the lower (L) layer. π̂ ) vF(px + ipy) is the kinetic
energy operator (with pyf -py for the K′ valley), hm is an
effective energy term due to the EPI with the ferromagnetic
insulators. We use the parameters t⊥ ) 0.39 eV,27,28 i.e., the
bilayer interplane coupling, and vf ≈ 106 m/s.29 Other
interlayer coupling terms are neglected, in the spirit of refs
19, 20, and 29, as they would not change the qualitative
features of the phenomenon described in this work. The
Hamiltonian acts on wave functions of the form

where A, B refer to the two inequivalent carbon atoms on
the upper graphene layer, A′, B′ to that of the lower layer.
Lx and Ly are the channel dimensions along X and Y direc-
tions. Now we distinguish the two spin components along
the Z axis, perpendicular to the plane; therefore �X, with X
) A, B, A′, B′, has to be regarded as a two-component spinor

The elements VU, VL, π, and t ⊥ are diagonal in the spinor
space, while off-diagonal terms can be due to the presence
of an effective Zeeman field. If we imagine to put the upper
graphene layer in contact with a ferromagnetic insulator
having a polarization on the XY plane, the exchange interac-
tion gives rise to an off-diagonal coupling in the spinor space
of the kind

FIGURE 1. Picture representing a double-gated graphene bilayer
structure in which the central part (C) is characterized by the use of
a ferromagnetic oxide as spacer between the upper layer and the
top gate. The oxide thickness tox and the interlayer distance d0 are
indicated. The potential of the top gate VGT and the one of the back
gate VGB are externally fixed, inducing potential values VU and VL

on the upper and lower graphene layer, respectively, via nonlinear
Poisson equation.
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where M̂ )(mx, my) is the versor of the magnetization vector
Mb . For simplicity, we assume for the upper layer a similar
effective Zeeman coupling hm for the A and B sites, while
EPI vanishes on the lower plane sites A′ and B′.

Bilayer Graphene. The idea of controlling spin rotation
of bilayer graphene is essentially based on the plane-
localization properties of the bilayer spinors, when a vertical
field is applied. In particular, let us assume for a moment
no EPI interaction, i.e., R ) 0 (H ) H0). In this case the
eigenvalues near the K, or K′, point, are given by the
formula26

with η ) (1 for the first (η ) -1) and second (η ) +1)
conduction (+) or valence (-) band. The bilayer spinors, for
a given kb and energy E, are obtained by solving the linear
system (H0 - E)Ψ ) 0. In Figure 2a we show the bilayer
dispersion curve, compared with the graphene dispersion
curves

E+
( ) (pνfk + ∆

2

and

E-
( ) (pνfk - ∆

2
obtained from eq 5 by decoupling the two layers (t⊥ ) 0).

In Figure 2b we plot the projection of the first bilayer
conduction band states (PU ) |�A|2 + |�B|2) on the U plane.
The behavior of the projection on the U plane can be easily
understood from the bilayer dispersion curve. In fact, at k
) 0, states of the first bilayer conduction band stand on the
Dirac point of the U graphene layer. At k ) 0, the A and B
sublattices are not coupled by the kinetic term π̂ in the
Hamiltonian in eq 1, therefore B and A′ sublattices are not
mixed by t⊥ and retain their original character. Correspond-
ingly, the spinor of the first conduction band will have a
100% weight on the B sublattice. With increasing k, the
bilayer spinors have mixed contributions from the two
planes and, eventually, at sufficiently large k, PU tends to a
constant value. An explanation for this comes from the fact
that for large k, the bilayer conduction bands essentially
originate from the mixing of only the n-type part of the Dirac
cones for the U and L graphene sheets (shown in Figure 2a),
while contributions from the p-like part may be neglected.
This leads to a two-level system with a fixed energy separa-
tion of ∆, as plotted in Figure 2a, and fixed tunnel-coupling
t⊥/2. The solutions of the two level system are

E( ) pνfk ( �∆2

4
+

t⊥
2

4
which correspond to the asymptotic behavior of bilayer
conduction bands for large k and

for the first conduction band (η ) -1), which explains the
plateau in Figure 2b at large k. We note that, for a given k,
PU of the first conduction band corresponds to PL of the first
valence band, and by reversing the potential of both layers
one would perfectly exchange the projection properties of
the two bands.

In Figure 2c, we plot the first conduction and valence
band of a bilayer graphene subjected to EPI interaction as
described by the Hamiltonian eq 1, with EZ ) 20 meV, and
an interlayer energy difference of ∆ ) 0.1 eV. When the EPI
interaction is taken into account, electronic wavefuctions
traveling on the U plane are subject to an effective Zeeman
interaction, basically proportional to PU, that results in a spin
splitting of the bilayer bands by PUEZ. If we reverse ∆, which
can be realized by inverting the bias of top and back gates,
the spin splitting of conduction and valence bands is in-
verted, as well as PUT PL, and the Zeeman splitting at small
k will vanish in the conduction band. In a regime in which
small k states are responsible for transport through a FO-
contacted bilayer region, we will therefore have a degree of
control over the electron spin rotation induced by the
effective Zeeman field.

FIGURE 2. (a) Bilayer dispersion curves (solid lines) compared with
the Dirac dispersion curves for the upper and lower graphene planes
without interplane mixing interaction (dashed line), for VU ) 0.05
eV and VL )-0.05 eV (∆ ) 0.1 eV). (b) Projection of the conduction
band states onto the upper plane as a function of k, for increasing
∆. The black solid line corresponds to the case in (a). (c) Dispersion
curve for a bilayer system with EPI interaction on the upper plane
with EZ ) 20 meV.
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Transmission through a FO Gated Region. To calculate
the spin rotation properties of our system, we analyze the
transmission through a region of the bilayer in which the EPI
coupling is active, as is the case in Figure 1. For simplicity,
we imagine abrupt boundary conditions such that the
contact with the FO is limited to the upper plane of the
graphene bilayer from x ) 0 to x ) Lc. We consider an
incoming conduction band electron from the left side (LS)
(x < 0) of given kb and therefore energy Ek, with a chosen v
spin polarization. Elastic transmission through the active EPI
zone conserves ky, because of the space homogeneity along
the Y axis, but not the spin, and leads to reflected and
transmitted components to the left and right sides (RS),
respectively (of v and V spin character).

In particular, the LS and RS are described by the Hamil-
tonian eq 1, with EZ ) 0. We can find, disregarding the spin
which is here conserved, four possible values of the wavevec-
tor kx compatible with ky and energy E: kx and -kx, which
are propagating modes, k̃x and -k̃x, which can correspond
alternatively to propagating modes or to evanescent modes,
with a finite imaginary part.29 The number of propagating
modes (with real wavevector) corresponds to the number
of intersection points of the conduction bands with the
horizontal line E ) Ek in Figure 2a. The remaining modes
are evanescent. Therefore the total wave functions on the
LS and RS can be written as

where the matrices CL, CR, and CIN are built from the spinor
set of the bilayer system in eq 1 without EPI. sb is the vector
describing the spin polarization with respect to the Z axis of
the incoming particle. Our calculation starts from fully polarized
incoming particles, for which sb) (1, 0)T. For all matrices, rows
run over the sublattices {i ) Av, AV, Bv, BV, A′v, A′V, B′v, B′V},
while columns run over the left region output modes {j)-kxv,
-kxV, -k̃xv, -k̃xV} for CL, right region output modes {j )
kxv, kxV, k̃xv, k̃xV} for CR, and incoming modes {j ) kxv, kxV} for
CIN. The output coefficients are collected in

with the tunneling coefficients t1, t-1, t̃1, t̃-1 for allowed modes
in up or down spin orientation, and the reflection coefficients
defined in a similar manner as r1, r-1, r̃1, and r̃-1.

In the central part of the system we have a mixing of spin
components induced by the effective Zeeman splitting.
Solving the secular equation for the Hamiltonian in eq 1 for
a given energy E and in-plane momentum ky, we obtain eight
solutions for the wavevector kx ) Rn with n ) 1, 2, ..., 8.
The corresponding modes are described by the spinor ΨRn

M

where the M index is used to specify that these states are
for the system with Zeeman interaction. The scattering state
in the central part of the system can be generally expressed
as

The Dirac equation requires the continuity of spinors at
the boundary x ) 0 and x ) L, which is now expressed by
the following linear relations

with P describing the phase accumulation of the different
components of the scattering state by traveling through the
C region. After elimination of ab, the problem is reduced to
the solution of a linear system of the kind Mx ) Sb, with

which can be easily solved by standard numerical tech-
niques. In practice, a source term Sb, describing the incoming
particle, pumps the linear system described through the
dynamical matrix M, which carries all the information about
the transmission through the central region and determines
the output steady state described by xb.

We consider the transmission of our system, which is
given by the sum of the outgoing propagating components
in the RS. We choose FO with magnetization along Y, so that
in the C region we have spin-splitted bands (Y-SSB), eigen-
states of Sy, while we inject and detect in the LS and RS
electron spin-polarized along Z. Note that as explained
before, with direct gate bias, the conduction bands will be
spin-splitted, while for a reverse bias the spin splitting is
negligible. In Figure 3, we show the spin differential trans-
mission Ts ) Tvv - TvV through the central region with FO
deposited on the U layer, with EZ ) 20 meV and LC )
150aC-C. Ts is calculated as a function of the wavevector of
the incoming particle in the LS. Figure 3a is calculated with

ΨL(0) ) CL rb + CINsb (7)

ΨC(L) ) CR tb (8)

rb ) (r1, r-1, r̃1, r̃-1)
T (9)
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T (10)

ΨC ) ∑
n

anΨαn

M ) CCab (11)
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CR tb ) CCPab (13)
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a direct potential energy difference between the graphene
planes of ∆ ) 0.1 eV. Indeed a marked resonance is
observed with negative values of Ts. Electrons of this wavevec-
tor are transmitted through the barrier with a spin rotation
of π. In Figure 3b, where ∆ ) -0.1 eV is reversed, such a
feature is absent and electrons preferentially preserve their
spin orientation. The spin-transmission properties are there-
fore dramatically affected by changing between direct and
reverse bias of the top and back gates.

In particular this resonance falls into the Mexican hat
region of the upper Y-SSB (Figure 2c), where three propagat-
ing states are active: two from the upper Y-SSB and one from
the lower one. The resonance condition is given by the
existence of two propagating modes, one from each of the
two Y-SSBs, for which ∆kxLc ) π + 2nπ, with n ) 0, 1, ...
(here n ) 0 applies). In fact, an incoming particle, spin-
polarized along Z, can be transmitted in the C region as a
linear combination of two states from the two bands (eigen-
states of Sy). These components, traveling through the C
region, acquire a phase difference of π, which corresponds
to a net spin-flip process. Note that the Mexican hat-like
dispersion makes it possible to have two propagating states
with large ∆kx, allowing the fulfillment of the resonance
condition with LC as small as 20 nm. Of course, choosing
different values for Lc leads to different positions of the spin-
flip transmission resonance.

For an incoming particle of lower energy, only the lower
Y-SSB contributes propagating components in the C region
as shown in Figure 2c. The overall transmission probability
T ) Tvv+ TvV has an upper limit of 0.5, because the propagat-
ing component is an eigenstate of Sy and can be seen as a
combination of half and half Sz spin components. For the
same reason, the spin differential transmission is close to
zero. For an incoming particle of energy above the reso-
nance, instead, there is one propagating component for each
of the Y-SSBs (see Figure 2c). However ∆kx between these
components is much smaller with respect to the resonance
case and their phase difference accumulated by traveling
through the C region is negligible. Therefore both the spin
differential transmission and the overall transmission are
close to unity.

Conductance. A readily measurable property of the
system is its conductance. We have therefore calculated the
2D conductance of the proposed device. In particular we are
interested in the spin-flipped relative conductance Xs ) GvV/
G, with G ) GvV + Gvv, which is a measure of the efficiency of
spin control. The 2D two-terminal conductance, which is
defined by dIx ) GxdVDS, is expressed as

with g ) 4 (accounting for the valley and spin degeneracy),
vx the group velocity along the transport direction, f(E) the
Fermi-Dirac distribution function, and µ the electrochemi-
cal potential. Integration is performed over the Brillouin
zone.

In Figure 4 we show the spin-flip relative conductance Xs

as a function of the electrochemical potential for LC from
50aC-C to 200aC-C, at a temperature of 1.8 K. Figure 4a is
computed with a direct gate bias of ∆ ) 0.1 eV, while Figure
4b shows the case with the reverse bias. The resonance
present in panel a, corresponding to an electrochemical
potential for which the spin-flip affects more than 80% of
transmitted electrons, is completely absent in panel b, where
electrons tend to preserve their original spin. This calculation
clearly demonstrates that we are able to control the spin-
flip of carriers traveling through the system by changing the
gate bias.

The total conductance is thermally activated as µ ap-
proaches the bottom of the conduction band of the LS
region. As µ enters the three-states spectral region in Figure
2c the conductance spin properties are dominated by the
behavior of the transmission probability in Figure 3a. This
leads, with a direct bias, to a pronounced resonance of Xs. A
fundamental factor for the appearance of this resonance is
that the spin differential transmission resonance in Figure
3a is almost isotropic for small ky, similar to the LS dispersion
curve, deviating only for large ky. Therefore, it is possible,
with the appropriate electrochemical potential, to adjust the

FIGURE 3. (a) Spin differential transmission Ts ) Tvv - TvV through the C region of LC ) 150aC-C with EPI and ∆ ) 0.1 eV, as a function of the
wavevector of the incoming particle. (b) Ts for a reverse potential energy difference of ∆ ) -0.1 eV.

Gx ) gq2

(2π)2
∫BZ
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Fermi level to this transmission resonance. The states
relevant to the conductance will therefore be quite well
collimated on the spin-flip transmission resonance. As ex-
pected, an increase of the temperature leads to a broader
state population, gradually blurring away this feature.

Self-Consistent Analysis. To provide an indication of the
real control that the gates exert on the system, and therefore
of the observability of the phenomenon, we performed a
self-consistent electrostatic analysis. Indeed, we can fix the
absolute value of the chemical potential, but we cannot set
the difference between the electrochemical potential and the
bilayer graphene midgap. In other words, the value of
the potential of the U and L layers of the graphene bilayer is
the result of the self-consistent calculation, which depends
on the gate voltages, taking into account the capacitive
coupling with the gates. In a double gate FET we can
independently fix the top and back gate voltages (VGT and
VGB). Alternatively we can give the average gate potential

VGm )
VGT + VGB

2

which is responsible for rigidly shifting the bands (and therefore
varying the electrochemical potential µ with respect to midgap),
and the gate voltage difference ∆VG ) VGB - VGT which opens
up the semiconducting gap of the graphene bilayer. To describe
the electrostatics of the system, we apply to the graphene
bilayer the plane capacitor model described in refs 8 and 30
Another way to describe the charge on the U and L plane is
band filling. In fact, the occupation of each one of the graphene
bilayer states is described by the Fermi-Dirac distribution, and
the charge it carries can be distributed on the U and L plane
according to PU and PL. The two descriptions of the
system, electrostatics and statistics, should be consistent
and their simultaneous solution fixes the U and L poten-
tials and, therefore, µ.

We focus our calculation on a system with ∆ ≈ 0.1 eV,
and analyze the control on the electrochemical potential with
respect to the midgap of the graphene bilayer. In Figure 5,
we show µ as a function of the average gate potential VGm,
where a potential difference VGB - VGT ) 0.023 and 0.034 V
has been applied for tox ) 1 and 2 nm, respectively (values

which lead to VL - VU ≈ 0.1 V). When the device is empty,
the electrochemical potential linearly increases with VGm. As
the electrochemical potential reaches the bottom of the
conduction band, we can observe an abrupt change of slope.
As the charge accumulates in the device, the variation of the
electrochemical potential becomes more difficult, due to
the increase of the quantum capacitance of the system.31

The spin-flip resonance region is easily reached with the tight
double gate structure adopted here, which optimizes the
electrostatic control. The considered oxide thicknesses are
obtained with state-of-the-art semiconductor technology,
and high-dielectric-constant oxides (the so-called high-K
dielectrics) can allow even better electrostatic control. In the
inset of Figure 5 we show the charge accumulated on the U
and L plane. The charge shows an activation behavior in
correspondence with the value of VGm for which the electro-
chemical potential reaches the conduction band.

Conclusion. We have demonstrated that bilayer graphene
FETs, in which a ferromagnetic insulator is used as a gate
dielectric, is an interesting system for spin manipulation. In
particular, we have shown that a good electric control of spin

FIGURE 4. (a) Spin-flip relative conductance Xs, at T ) 1.8 K, for a system with direct bias of ∆ ) 0.1 eV, and inverse bias (b) at T ) 1.8 K. µ
refers to the electrochemical potential with respect to midgap of the bilayer bands, as shown in Figure 2c.

FIGURE 5. Electrochemical potential as a function of VGm for a
double gate graphene bilayer in quasi-equilibrium condition, at a
temperature T ) 1.8 K, calculated for tox ) 1, ∆VG ) 0.023 V and tox

) 2 nm, ∆VG ) 0.034 V. In the inset the charge accumulated on the
U and L graphene layers in the two cases is shown.
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rotation can be achieved even in a 2D system without lateral
confinement, at low temperature. We show that by switching
between a direct and a reverse gate polarization, we can
modulate the ratio of spin-flipped transmitted carriers from
more than 80% to less than 20%. Therefore, the system itself
acts as a tunable spin-flipping device and offers the possibility
to devise spin-FETs based on bilayer graphene, exploiting the
exchange proximity interaction with a ferromagnetic insulator,
instead of the rather weak intrinsic spin-orbit coupling.
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(17) Žutić, I.; Fabian, J.; Das Sarma, S. Rev. Mod. Phys. 2004, 76323,

410.
(18) Semenov, Y.; Kim, K.; Zavada, J. Appl. Phys. Lett. 2007, 91,

153105.
(19) Huegen, H.; Huertas-Hernando, D.; Brataas, A. Phys. Rev. B 2008,

77, 115406.
(20) Semenov, Y.; Zavada, J.; Kim, K. Phys. Rev. B 2008, 77, 235415.
(21) Dell’Anna, L.; Martino, A. D. Phys. Rev. B 2009, 80, 155416.
(22) Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Science

2006, 313, 951–954.
(23) Castro, E.; Novoselov, K.; Morozov, S.; Peres, N.; dos Santos, J. L.;

Nilsson, J.; Guinea, F.; Geim, A.; Neto, A. C. Phys. Rev. Lett. 2007,
99, 216802.

(24) Oostinga, J.; Heersche, H.; Liu, X.; Morpurgo, A.; Vandersypen,
L. Nat. Mater. 2008, 7, 151.

(25) Zhang, Y.; Tang, T.-T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.;
Crommie, M. F.; Shen, Y. R.; Wang, F. Nature 2009, 459, 820.

(26) McCann, E. Phys. Rev. B 2006, 74, 161403–161407.
(27) Nilsson, J.; Neto, A. C.; Guinea, F.; Peres, N. Phys. Rev. B 2008,

78, No. 045405.
(28) Li, Z.; Henriksen, E.; Jiang, Z.; Hao, Z.; Martin, M.; Kim, P.;

Stormer, H.; Basov, D. Phys. Rev. Lett. 2009, 102, No. 037403.
(29) Barbier, M.; Vasilopoulos, P.; Peeters, F.; Jr., J. P. Phys. Rev. B

2009, 79, 155402.
(30) Castro, E.; Peres, N.; dos Santos, J. L.; Guinea, F.; Neto, A. C. J.

Phys.: Conf. Series 2008, 129, No. 012002.
(31) Cantele, G.; Lee, Y.-S.; Ninno, D.; Marzari, N. Appl. Phys. Lett.

1988, 52, 501.

© 2010 American Chemical Society 4469 DOI: 10.1021/nl102298n | Nano Lett. 2010, 10, 4463-–4469


