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Abstract 

In this work we propose a channel backscattering model in which increased carrier temperature at 

the top of the potential energy barrier in the channel is taken into account. This model represents an 

extension of a previous model by the same authors which highlighted the importance of considering 

the partially ballistic transport between the source contact and the top of the potential energy barrier 

in the channel. The increase of carrier temperature is precisely due to energy dissipation between 

the source contact and the top of the barrier caused by the high saturation current. To support our 

discussion, accurate 2D full band Monte Carlo device simulations with quantum correction have 

been performed in double gate nMOSFETs for different geometries (gate length down to 10 nm), 

biases and lattice temperatures. Including the effective carrier temperature is especially important to 

properly treat the high inversion regime, where previous backscattering models usually fail. 

Index Terms—Backscattering, MOSFETs, Carrier Transport, Monte Carlo Device Simulation. 



I. Introduction 

Modeling ballistic and partially ballistic charge transport in nanoscale transistors is of fundamental 

importance given the relentless scaling down of device size and has attracted significant research 

interest in recent years [1-14]. Modeling of quasi-ballistic transport is commonly faced with the 

Lundstrom model (LM) [2] which is based on the simplified theory of the ballistic transistor 

developed by Natori [1]. In the LM charge transport in the channel is regulated by the injection of 

thermal carriers from the top of the barrier (called the “virtual source” or VS) into the channel. This 

picture has provided a radically new way to look at the problem, because it moved attention from 

the drain to the source. However the model attracted some criticisms from the literature regarding 

the assumption of elastic transport as well as the specific expression for the backscattering 

coefficient [3, 4, 15]. Recently we proposed a model for charge transport in the channel which 

retains the useful features of the approaches in [1] and [2] but avoids the concept of virtual source, 

and includes a less idealized picture of transport between the source contact and the potential 

energy peak in the channel (the former VS) [14]. In this way, for the partially ballistic regime, 

charge distribution at the potential energy peak is not represented by the superposition of hemi-

maxwellians. In this work we show that, in the saturation regime, carriers at the top of the barrier 

are not in equilibrium with the lattice and have a higher effective temperature. The inclusion of the 

effective carrier temperature allows us to extend the range of applicability of the previously 

proposed model [14], in terms of device geometry, bias dependence and temperature. 

 

 

 

 



II. Device Structure and Simulation Method 

The simulated reference device is a double-gate (DG) n-type metal-oxide-semiconductor field effect 

transistor (nMOSFET) with a scaled gate length, an ultra-thin un-doped silicon body, an oxide 

(SiO2) thickness of 1.5 nm and long (35 nm) source and drain heavy doped (1020 cm-3) n-type 

regions (Fig. 1). The use of these long regions, which are not part of the effective device and require 

an additional computational cost, is necessary to avoid artifacts in the carrier distributions injected 

by source and drain contacts. Let us stress the fact that the source and drain contacts - which are 

assumed here as ideal reservoirs - are external to the simulation domain. Therefore the source and 

drain (n+) regions in the simulation domain are not part of the reservoirs, and experience non-

equilibrium transport and dissipation. Gate length is varied from 10 to 50 nm and silicon thickness 

is varied from 1 to 10 nm. The small silicon body thickness is selected to approach the one-

dimensional (1D) electrostatics which is a basic assumption for the transport model used in this 

work. The simulation tool is a two-dimensional (2D) full band self-consistent Monte Carlo (MC) 

device simulator for Silicon. It includes several scattering mechanisms such as phonons, ionized 

impurities, and surface roughness [16]. The simulation is semi-classical and carrier energy is 

distributed according to a three-dimensional (3D) density of states (g3D). Quantum confinement 

effects are taken into account through an efficient correction to the electrostatic potential [17]. 

 

III. Proposed Model for Channel Backscattering 

In Ref. [14] we avoided the concept of VS as defined by the LM [2]: we assume that in saturation 

carriers are injected into the channel from the source reservoir with an equilibrium distribution and 

then we include in the model the effect of collisions occurring between the source contact and the 

“top of the barrier” or xmax (which is called VS in the LM). In saturation 
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where ID is the drain saturation current, Q is the charge density at xmax, kv is the ratio of the average 

velocity of positive directed carriers v+ to the average velocity of negative directed carriers v- at 

xmax, r=I-/I+ is the backscattering ratio (BR) as defined in the LM [2], I+   (I-) is the positive 

(negative) directed current at xmax and ( )++
BLSBLS nI ,, ,  are the positive directed moments at xmax which 

are functions of the carrier temperature TC and of the normalized electrostatic potential 

( ) CCFS kTEE /−=η  where EFS is the source reservoir Fermi level, EC the conduction band energy 

at xmax and k is the Boltzmann’s constant. In the Natori-Lundstrom picture, carriers at xmax are 

assumed in equilibrium with the lattice so that the carrier temperature is assumed equal to the lattice 

temperature (TL). The assumption of carrier temperature TC = TL has also used also in our previous 

model [14]. It is strictly correct at equilibrium when VDS=0 and ID=0, but when a strong current 

flows in the channel, energy dissipation between the source contact and xmax increases carrier 

kinetic energy, so that the effective temperature of carriers at xmax is higher than TL. Assuming that 

carriers are distributed following a Fermi-Dirac function at xmax, the effective carrier temperature TC 

is linked to the average carrier energy E and to the normalized electrostatic potential η evaluated all 

at xmax, by 
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where g is the system dimensionality and jℑ the Fermi-Dirac integral of order j. The ratio of Fermi-

Dirac integrals in Eq. (3) accounts for degeneracy.  The model proposed in this work can be 

represented by the system of Eqs. 1-3, three equations in the three unknowns r, TC, η. The values 

for ID, Q and E at xmax as well as kv are extracted from the Monte Carlo simulation. In [3] and [14], 

kv was fixed to a value 1.35. To be consistent with our MC device simulation tool, and deviating 



from Ref. [14] where 2D ballistic equations have been used, here we adopt 3D equations for the 

ballistic moments (g=3) 
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where +
BLSJ ,  

is the ballistic source-injected current density (A/cm2) and h is the Planck’s constant. 

The density of states effective mass mDOS and the conduction effective mass mC are 1.08 m0 and 

0.26 m0, respectively, where m0 is the free electron mass. For experimental extraction the method 

proposed in [13] with the correct model presented here may be used, in conjuction with an 

approximated method to extract carrier temperature from experiments. 

 

IV. Monte Carlo Device Simulation Results 

The result of MC device simulation in a device structure with L=20 nm, tsi=7.5 nm, tox=1.5 nm at 

the lattice temperature TL=300 K for different gate voltages and VDS=1 V is shown in Fig. 2. In this 

figure the backscattering ratio (BR) I-/I+ extracted from the MC has been compared with the values 

calculated with the proposed model and with the LM. For both models the cases T=TL (as reported 

in [14]) and T=TC (as proposed in this work) have been considered (in the case of the LM the 

correct kv extracted from MC has been considered in order to exclude this source of error). In the 

same figure the effective carrier temperature at xmax, TC, calculated by the proposed method, has 

been plotted as a function of gate voltage. For low gate voltages TCTL and the model reported in 

[14] works well. However, when the overdrive increases, carriers at xmax are not in equilibrium with 

the lattice and TC significantly departs from TL. Correspondingly, the model reported in [14] fails 



while the model proposed in this work, where the effect of the effective temperature has been 

included, continues to work quite well. It is worth noting that the LM is not able to accurately 

reproduce the BR also in the case in which the effect of TC is included, thus confirming that 

neglecting the scattering between the source and xmax is a major source of error in the backscattering 

calculation, as discussed in [14]. Figure 3 shows the BR calculated for different geometries, biases 

and lattice temperatures. When not changed, tsi = 1.5 nm, L = 20 nm, VGS = 1.4 V and TL = 300 K. 

The silicon thickness is chosen to be very small in order to emphasize the disequilibrium at xmax. 

Reducing tsi is equivalent to increasing the gate voltage because both degenerate conditions and 

current density increase. As a result, also the carrier temperature increases. It is evident that the 

predictions of the proposed model are in close agreement with the values obtained by MC 

simulation in all cases, while the other models show relevant error in backscattering calculation. 

Fig. 4 shows the carrier energy distribution at xmax as extracted from the MC and the one calculated 

using a Fermi-Dirac function with TC and η extracted by our model. The good agreement confirms 

our hypothesis that, in saturation, carriers are heated at xmax with a temperature remarkably higher 

with respect to the lattice temperature.  

This study demonstrates the necessity of including the effective carrier temperature at the 

top of the barrier and dissipation from the source contact to the top of the barrier to accurately 

model channel backscattering in the high-inversion regime where previous backscattering models 

usually fail. 
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Figure 1. The simulated structure is a double gate nMOSFET with thin undoped silicon body, oxide 

thickness tox=1.5 nm and long source/drain extensions (Lext=35nm). 
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Figure 2. The BR (left axis) and the effective carrier temperature TC (right axis) in a device structure 

with L=20 nm, tsi=7.5 nm, tox=1.5 nm at the lattice temperature TL=300 K for different gate voltages 

and VDS=1 V. 
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Figure 3. The BR as a function of device geometry, bias and lattice temperature with VDS=1V (when 

not changed, L=20 nm, tsi=1.5 nm, VGS=1.4V, TL=300K). The proposed model allows us to obtain a 

more accurate reproduction of the MC simulation results with respect to previous models for all 

cases. 
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Figure 4. The carrier energy distribution at xmax extracted from the MC (fMC) and the one calculated 

with a Fermi-Dirac function (ffit) with the effective carrier temperature (TC) and η extracted with the 

proposed model. 


