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Quantum mechanics does not provide direct tools for calculating time quantities related to the
motion of a particle. In this paper we introduce a meaningful “time,” the “stay time” in a space
region, and we propose a method for calculating its statistical distribution. The stay time is obtained
by a method based on Feynman’s path integrals, which is similar to the one devised by Sokolovski
and Baskin. We add a perturbative potential to the region being considered in order to induce
variations in the wave function from which we can draw information about the time spent in the
region. Unlike Sokolovski and Baskin, however, we obtain a real stay time and real greater order
moments of its distribution. We also analyze other two “event times,” the “time of presence” at a
given position ard the “time of passage” through a surface. These times, which were introduced by
Olkhovski and Recami, are obtained directly from the time evolution of the probability density and
the probability current density. We find some relations between such times and the stay time, which
show the consistency of the proposed method. Our approach is internally self-consistent, allows a
general analysis of the characteristic times in the motion of a quantum particle, and is effective in
explaining the results of other studies, in particular in the field of the tunneling times of potential
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barriers.

I. INTRODUCTION

A variety of time quantities can be related to the mo-
tion of a classical particle; for instance, the time spent
in a given region of space, and the moment at which the
particle reaches a given position. Classical mechanics
provides proper tools for obtaining these quantities.

On the contrary, in quantum mechanics time is a “dy-
namical parameter,”':? so there is no direct tool (i.e., an
operator) for determining the meaningful terms of the
statistical distribution of time quantities. A proper solu-
tion to this problem is needed in the study of the high-
frequency behavior of quantum devices, tunneling phe-
nomena, and nuclear and chemical reactions.>

Interest in this subject has produced a considerable
number of studies in recent years, particularly concern-
ing the problem of tunneling times across potential barri-
ers. A wide-ranging review of proposals concerning tun-
neling times can be found in the paper by Hauge and
Stgvneng,* and more recent studies can be found in the
literature.510

However, no unified and general approach exists that
allows us to obtain the desired times; rather, there is a
variety of proposals leading to different results, even of
orders of magnitude in the case of the tunnel effect. The
only well-defined and well-established result is the “dwell
time,” which is the average time spent in a given region
by all incoming particles.

The aim of this paper is to propose a method for defin-
ing and determining the average and greater order mo-
ments of the distribution of the time spent in a given
region, which we call the “stay time.” Moreover we will
examine two “event times.” Event times are the average
instants of time at which an event occurs. We use a pro-

0163-1829/94/49(23)/16548(13)/$06.00 49

cedure of averaging upon times described by Olkhovski
and Recamil!'!? for obtaining the mean time the particle
is at a given position in space (which we call “time of
presence”), and the mean time the particle traverses a
given surface (which we call “time of passage”).

Afterwards we obtain some relations between time of
passage, stay time, and dwell time, which prove the con-
sistency of our results and confirm the validity of the
proposed method. Finally, we show that our approach is
a suitable tool for explaining the results of other studies
in the case of the tunnel effect.!®4

The method for obtaining the stay time basically con-
sists in adding a perturbative potential to the region be-
ing considered and then analyzing how the wave function
changes after interaction with it. In order not to mod-
ify the evolution of the wave function we have to make
the potential approach zero and draw information from
the derivative of the wave function with respect to the
perturbation.

Certain approaches to the tunneling time problem con-
sist basically in adding an infinitesimal perturbation to
the barrier region: a magnetic field,’>"'7 an oscillating
potential,’* or a constant potential.!® Our method is
closer to that of Sokolovski and Baskin,'® in the sense
that we use a constant and uniform perturbative poten-
tial and Feynman’s path integral technique.!® These au-
thors obtain a complex time, whose physical meaning
has been widely investigated;* 7 Sokolovski and Connor’
show that the complex nature of this time is a conse-
quence of the uncertainty principle. We will analyze this
point later.

On the basis of Sokolovski and Baskin’s method,
Fertig® has recently defined an amplitude distribution of
“traversal times” in the case of a one-dimensional rectan-
gular barrier. Then he obtains a complex mean traversal
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time and complex moments of the distribution, whose
role seems to be uncertain.

Our method, which holds true for any system, leads to
a more plausible real time; moreover, it allows us to cal-
culate greater order moments of the distribution, notably
the second-order moment, and through it, the standard
deviation of the stay time. In particular we find that the
mean stay time and its standard deviation coincide with
the real and imaginary parts, respectively, of the complex
time obtained by Sokolovski and Baskin.!® Furthermore,
we obtain a relation between the perturbative potential
in the given region and the stay time in it, which is for-
mally analogous to that connecting conjugate quantities,
and, therefore, suggests the possibility of defining a stay
time operator.

Finally, handling probability distribution functions
straightforwardly suggests an extension of the probabil-
ity interpretation that leads to the definition of the time
of presence and of the time of passage. It has been
shown that this extension leads to the definition of a
time operator.!?

Therefore, we feel that the statement concerning the
impossibility of defining a time operator?? deserves fresh
consideration. New interest is now being shown in this
topic.2!

II. STAY TIME
A. Perturbative potential method

The time evolution of the wave function ¥o(r,t) of an
m-mass particle is determined by the Schrédinger equa-
tion

ih%\l'o(r, t) = Ho(r,t)¥o(r, ), (2.1)
where Hy (r,t) is the Hamiltonian operator
- h2v?
Ho(l', t) = - om + ‘/0(1', t)’ (2'2)

Vo(r,t) being the potential experienced by the particle
and h = 27/ being Planck’s constant.

Our first aim is to determine the mean time spent in
a given region  and in the time interval (¢o,t1) by the
particle found in dr; at time ¢ = t;. In order to do
this, at time t = to we superimpose a uniform and time-
independent perturbative potential V' on the region .
The new Hamiltonian of the system becomes

H(V,to;r,t) = Ho(r,t) + Vu(t — to)Ogq(r), (2.3)
where Oq(r) equals 1 if r € Q2 and 0 otherwise, and
u(t — to) equals 1 if t > ¢ and 0 otherwise.

From a physical point of view we might consider V as a
testing potential applied in 2 from time ¢, for detecting
the presence and then the stay time of the particle in
Q. Probably we could also use other quantities, such as
a uniform magnetic field affecting the particle with spin
and producing effects suitable for detecting the presence
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and the related stay time in the region being considered.

When we make the probe quantity approach zero, the
outcoming time will be that of the unperturbed system.
With the Hamiltonian of (2.3), the Schrédinger equation
of the system becomes

mﬂq/(v, to;r,t) = H(V,to;r,t)¥(V, to;r,1t),

= (2.4)

where we have made the dependence of ¥ on V and ¢
explicit. For the following calculations and results it is
more convenient to write the function in the exponential
form

U(V, to;T,t) = R(V, to;T, t) exp [%S(V, to;r,t)] . (25)

R and S being real functions.

Let us consider the particle described by ¥, and found
in r; at time t;. The results of the next section will
enable us to state that the mean time it spends in Q
from ¢ to t; (from now on this will be referred to as the
“stay time”) is

aS ih 0T
7(t0;r1,t1) = — = Re {—-———} y (26)
IV |y —o YoV Jly=o
and the mean square stay time in Q is
A= (22) L37:AN
(boirs, )= | 3y ROV
V=0 V=0
e Ak
=\Tav , (2.7)
V=0

so that the standard deviation o, (to;r1,¢1) of the stay
time in  becomes

or(to;r1,t1) = {;E(to; ri,ty)

—[7(to;r1,t1)]?}/

)
= ‘RW . (2.8)

V=0

B. Path integrals and stay time in a given region

The aim of this section is to show that an interesting
relation exists between the perturbative potential on re-
gion 2 and the stay time in it. We refer to the situation
described in (2.4).

Using Feynman’s path integral technique!® we can
write, for all ry and ¢,

U(V,to;r1,t1)
:/k(V;rI,tl;ro,to)\Il(V,to;ro,to)dro, (2.9)

in which the integral is over the whole space and the
kernel k(V;ry,t1;r0,%0) is defined as
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k(V;ri,t1;r0,t0) = /exp (}—,iS[V,r(-)]) Dr(-), (2.10)

where

SOl = [ Emit() - Vo(r(),0)

to

~Vu(t — to)Oq(r(t))]dt.

Equation (2.10) is a path integral, i.e., a sum of terms
of the type exp{iS[V,r(-)]/A} over all arbitrary space-
temporal paths r(-) in such a way that r(¢s) = ro and
l‘(tl) =Tr].

From time to to ¢, r(t) is inside Q for a time 7[r(-)]
given by

(2.11)

()= [ Oar(t)ds

to

(2.12)

thus we can say that 7(r(-)] is the stay time in £ cor-
responding to the path r(t); this value is clearly in the
range (0,t; —tp). Equation (2.11) can now be written as

SVir(1)] = 8[0,x ()] = Vrlr()]. (2.13)

Let us substitute the expression just written in (2.10)
and write it in double integral form, i.e.,

k(V;ri,t1;ro,t0)

= /Otl_to d'r/exp(%S[O,r,.(-)]——i%)Dl‘r('),
(2.14)

where the second integral covers all the paths r, whose
stay time in Q equals 7.
We can also write (2.14) in the form

k(V;ry,ti;10,10)

t; —to X
= / e_zv"/”'y(v';r1,t1;r0,t0)d‘r (2.15)
0
if we define
7
v(T;r1,t1;T0,t0) = /exp (FLS[O,rT()]) Dr.(-). (2.16)

As we can see from (2.16), v too is a path integral, corre-
sponding to a null potential V', and obtained by summing
over the paths whose stay time is 7.

By definition (2.12), 7 is in the range (0,¢, — to), so
if we choose 7 ¢ (0,t; — to) there is no corresponding
path and the integral in (2.16) is over a null domain.
Consequently the limits of integration in (2.15) can be
extended from —oo to +00. Now (2.9) becomes

+oo
dTe—iV'r/h

U(V,to;r1,t1) = /

— oo

X /7(T§rlat1;r0at0)

x¥(V,to;To,t0)dro. (2.17)
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Before to, the instant we turn on the potential V,
the Schrodinger equation describing the system is (2.1).
Since the wave function is continuous with respect to
time, we have ¥(V,to;r,t9) = Po(r,to) and (2.17) be-
comes

+oo
\Il(VatO;rlatl) =/ e‘iVT/hq’(Tvto;rlatl)dTv (218)

—00

where we have put

®(7,to;r1,t1) = /’Y(Tﬂ'latl;l’o,to)‘I’o(To,to)dro-

(2.19)

Equation (2.18) is a Fourier-transform relation in which
the potential V superimposed on 2 and the stay time 7
in  are conjugate quantities.

Within the framework of Feynman’s approach, we can
analyze (2.18) in a similar way to all the cases in which
the wave function is given by a Fourier-transform-like ex-
pression, e.g., for a change of representation.!® From this
point of view ¥(V, tg;rq,¢1) is the probability amplitude
that, when V is the perturbative potential on 2, the par-
ticle is at position r; at time t¢;; it is a sum over different
alternatives.

Each alternative can be written as
®(7,t0;11,¢1) exp(—iV7/K). The former term is the am-
plitude that the particle is in ry at ¢;, and has spent a
time 7 in Q; the latter, exp(—:V'1/k), is the amplitude
that, if the time spent in Q is 7, then the perturbative
potential is V.

C. Mean stay time in Q

According to the above considerations, and to what
we do when we deal with Fourier transforms, we could
obtain a mean (7(to;ry,t1)) of 7 for the wave func-
tion o (V,to;r1,t1) by simply using |®(7,t0;r1,t1)|? as
a probability density of 7. So we could write

ti—to . 2
(T(tos 1, t1)) = 20— TIB(7, ity o) dT'
fol ° |®(7’, to;rl,t1)|2d'r

(2.20)

We see that in (2.20) we have no information about
the value of V. The reason is that V and 7 are conjugate
quantities with respect to a Fourier transform, so a mean
of 7 implies averaging on V from —oo to co.

In reality, we are interested in a mean of 7 for a partic-
ular value of V, i.e., for V = 0, so we cannot use (2.20) in
this form. First of all, we need to write (2.20) in a form
in which we can show the operation of averaging over V;
then we can try to draw up an expression to which we
give the meaning of the average of 7 for a given V, i.e.,
a “local” average of 7.

In order to follow such a method, from (2.18), by per-
forming the inverse Fourier transform, we obtain

1 [t

T orh ) o

U(V,to; 1y, tl)eivr/th,
(2.21)

®(7,t0;r1,t1)
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and substitute it in (2.20), so that we can write

(T(to;r1,t1))

_ ff:: | ¥ (V, to;r1,t1) |27 (V, tos re, 81 )dV (2.22)
W (V, to;Ta, 1) |2dV T

where

dS(V, to;ry,t1)

W(Vato;rlitl) = - BV

(2.23)
Now (7(to;r1,t1)) is expressed as an average of
7v(V,to;r1,t1) on varying V. The weight of each 7y
is the probability density that the particle is in ry at
t = t;, when the perturbative potential in 2 from ¢ is
V. Therefore we can give 7y the meaning of average stay
time in Q of the particle found in ry at time ¢;, when the
superimposed potential on €2 from %o is V.

What we are really concerned about is the mean stay
time when V is null; in this case the significant quantity
is E(O, to;r1, tl). Putting ?(to; r, t1) = W(O, to; Ty, t1)7
from (2.23) we get (2.6).

It is worth noting that in (2.22) we can use any func-
tion [Ty + s(V)] in the place of 7v/, where s(V) is any
arbitrary function of V such as f_+: |¥|2s(V)dV = 0.
Therefore, the operation of giving 7y the meaning of av-
erage stay time in Q for a given V, according to (2.23),
may appear to be arbitrary, in the sense that there is not
only one choice for the expression of the local mean 7y
of 7. Nevertheless, the validity of our approach can be
demonstrated by checking the consistency and the plau-
sibility of our results; any further discussion on s(V) is
beyond the scope of the present work. The same con-
siderations apply to the following derivation of the mean
square stay time.

D. Mean square stay time in 2

We obtain the mean square time by using a similar
procedure. By starting from the expression

ftl —to
0

T2I¢(’T, to; Ty, tl)lzd'T

T2(to;r1, 1)) = , (2.24
( ( 0,11 1)) fotl—to |‘I>(T, to;rl,t1)|2d7' ( )
from (2.21) we obtain
(T2(tosT1,t1))
too |‘I’(V to,l‘l,tl)lz (V to, rl,tl)dV (2 25)
- JI2 10V, tosra, 1) [2dV T
where we have put
B taira,t) = (550, to,rl,tl))
N )
R(V tO,rl,tl) V
2
<R(Vitoirt)) i (220)
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T‘Z,(V, to;T1,t1) is the mean square time spent in Q by the
particle in ry for t = ¢;.

Defining 72(to;r1,t1) = 72(0,%0;T1,%1), We can write
(2.7) directly. Again, we wish to point out that the mean
stay time and the mean square stay time depend upon
the point of observation r; and upon the time interval
(to,t1) during which the measurement is taken.

Schulman and Ziolkowski?? find that the major con-
tribution to the propagator through a potential barrier
comes from a path corresponding to a purely imaginary
time spent in the barrier. They connect the complex av-
erage tunneling time to the complex pole of a scattering
matrix, whose real and imaginary parts define the loca-
tion and the width of the resonance. As a consequence
they interpret the imaginary time as the effective spread
in significant tunneling times.

We wish to point out that their imaginary time is equal
to the imaginary part of Sokolovski and Baskin’s com-
plex time,'® and to the standard deviation of our stay
time (2.8). Therefore Schulman and Ziolkowski’s consid-
erations are in agreement with our result. For practical
opaque barriers, the real part of the complex traversal
time is much smaller than the imaginary part, so the
assumption that the major contribution comes from the
imaginary part of the time is a good approximation.

E. Stay time and the uncertainty principle

In this section we want to show that the uncertainty
principle does not force us to obtain a complex stay time,
as many authors assert.5 ® Complex quantities typically
arise as a consequence of Feynman averaging.'® From our
point of view, rather, the path integral technique is a tool
which is only used for obtaining and explaining (2.18), as
we have shown, but is no longer employed for determining
the average times. It would have to be so, in reality,
because the complex times obtained by other approaches
are not really manageable.

Now we are going to briefly describe the averages per-
formed in the quoted papers in order to show the dif-
ferences of our approach. We start by writing (2.18) for
V=0,ie,

+o0

\I’(O, to;l’l,tl) = / Q(7', tO;rl)tl)dT; (227)

—0o0

the probability amplitude that the particle is in r; at time
t; is the sum of the probability amplitudes of interfering
alternatives, each corresponding to a time 7 spent in the
region 2 by the particle found in r; at ¢;.

Actually, the complex time 7. is straightforwardly
obtained®®!® by simply performing a weighted average
over the alternatives, i.e., by means of the relation

ftl to T<I)('r,to,r1,t1)d'r

T (thrlytl) —
€ f to ‘I’(T to,l‘l,tl)d’r

(2.28)

According to Feynman’s formulation of the uncertainty
principle,'® we cannot determine the alternative taken by
our process without destroying the interference between
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the alternatives. So the average (2.28) has to be complex
valued, and cannot be used to predict the stay time of
the particle.”

In order to obtain 7.(to;r1,t1) in a simpler way, we
have just to notice that the operation of adding a pertur-
bative potential upon the region acts as a prism, allowing
us to “see” the contribution of the interfering alterna-
tives, and to obtain the probability amplitude of each 7
by the means of the Fourier transform (2.21), by virtue
of which Eq. (2.28) gives the complex value

ih OV
Te(tosT1,t1) = TV

Our idea is to consider (2.18) not just as a way for ob-
taining ®(7,te;T1,t1) easier than the integration over an
infinite number of paths, but to exploit the relation be-
tween V and 7, with reference to the relations between
other conjugate quantities such as, for instance, position
and momentum. In order to show this, let us consider
the wave function ¥g(r,t) and its Fourier transform in
momentum representation ¢o(p,t); we can write

(2.29)

V=0

+oo
Vo) = [ alptiexnip x/mdp,  (230)
from which, for r = 0, we have
+oo
w0, = [ polp.t)dp, (2.31)

according to which the probability amplitude that the
particle is in r = 0 at t is a sum of interfering alternatives,
each corresponding to a momentum p of the particle in
r=0att.

Now let us suppose that we want to know the average
momentum of the particle in r = 0 at t. According to
(2.31), the situation is the same encountered in (2.27).
Feynman’s averaging of p, as a matter of fact, leads us
to obtain a complex valued momentum p,, i.e.,

P.(0,t) =

)
r=0

(2.32)

J2Z peo(p,t)dp {_ihV\Ilg}
T o(p, t) dp Lo

which is a result completely analogous to (2.29).
An interesting way to overcome this difficulty is to use
the current probability density

I(r,t) = %Re{lll;‘;(—ihV)\Ilo}. (2.33)

This definition of J is largely accepted in quantum me-
chanics, even if it contains much that is arbitrary;® it is
just the simplest real expression that obeys the continu-
ity equation for the probability density. Moreover, (2.33)
leads to a hydrodynamical definition of average momen-
tum

g0, RV
p(0,t) = m———_—l‘l’o(o,t)]z = Re {-— T, 0}

. (2.34)

r=0
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which has the undoubted merit of being real valued. In-
cidentally, it is interesting to notice that, in Bohm’s in-
terpretation of quantum mechanics,?® p defined in (2.34)
is the actual momentum of the particle being in r = 0 at
t.

In our approach we exploit the relation between V
and 7 for obtaining (2.6), which is formally analogous to
(2.34). Also in our case, owing to the undefined function
s(V) (see Sec. IIC), (2.6) is somewhat arbitrary, and its
validity can be checked by verifying the self-consistency
of our results.

III. EVENT TIMES

In this section we are going to examine two other char-
acteristic times, which are “event times,” i.e., times at
which something occurs. One is the average time at
which a particle can be found at a given point, the “time
of presence,” the other is the average time at which a
particle traverses a given surface, “the time of passage.”

These times were introduced by Olkhovski and
Recami'!'!? in conjunction with the introduction of a
time operator in quantum mechanics. Regarding time as
an observable leads to the possibility of defining expecta-
tion values and probability distributions for the time at
which some event occurs.

A. Time of presence

The probability P4(t) that the particle described by
Wo(r,t) is in a region A at time ¢t is given by

Pa(t) = /A Wo(r, £)|2dr. (3.1)

The question “when is the particle in A during the time
interval (to,¢1)?” can only be answered by a statistical
average

o tPa(t)dt
[l Pa(t)dt

If we substitute (3.1) in (3.2) and make A smaller and
smaller, up to an infinitesimal volume dr; around the
position ry, we obtain

th (to, t1) (3.2)

[ 1o (ra,t)[?dt
Jot [@o(ra, t)|2dt

to

T (to, t1;11) = (3.3)

This expression can be regarded as the mean time at
which the particle described by ¥y can be found in dr,
in the time interval (to,t).

We call fp(to, t1;r1) the mean “time of presence” in ry
in the interval (to,t1). Equation (3.3) implies an exten-
sion of the probability interpretation, in the sense that
[To(r,t)|2drdt is the probability that the particle is in
the volume dr in the time interval (¢,t + dt).

For a one-dimensional case (3.3) reduces to
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S t|%o(zy, t)|2dt
S 1Wo(er;t)[2dt

to

Ep(to, t1; 1)

(3.4)

Definition (3.3) of the time of presence suggests the pos-
sibility of introducing a time operator; a wide study of
this subject can be found in the papers by Olkhovski and
Recami. 112

B. Time of passage

The definition of time of passage requires another ex-
tension of the probability interpretation.!? Given an in-
finitesimal surface dS, centered in r; and perpendicular
to the versor n, the probability flux dF through dS at
time ¢, is

dF(l‘l,tl) = J(l‘]_,t]_) -ndS, (35)
where the current probability density J is given by (2.33).
If all the components of ¥y in the momentum repre-
sentation give a contribution to the flux through dS at
t, which is positive valued, i.e., the traversal of dS is
possible only in the direction of n, we can assume that
the probability that the particle passes through dS in the
time interval (¢1,t; + dt) is
dP = dF(rl, tl)dt = J(l‘l,t]_) -ndS dt. (36)
The probability that the particle traverses a surface I"
in the time interval t;,¢, + dt is

Pr(ty)dt = / 3(r1,t1) - ndS dt, (3.7)
r

and the mean time at which the particle traverses I" dur-

ing the time interval (to,t1) is

Jor tPr(t)dt

[& pr(t)dt

to

T (to,t1) = (3.8)

Also in this case dP defined in (3.6) has to remain pos-
itive during (to,t1) on every point of I'. We call tT the
“time of passage” through the surface I'. It seems to us a
better name than “arrival time,” used by other authors.?*

For the one-dimensional case, the surface I" reduces to
a plane ¢ = z; and the time of passage becomes
S td (1, t)dt

[ (2, t)dt

to

-
t (to,tl;zl) = (3.9)

The time of presence (3.3) and the time of passage (3.8),
of course, are different quantities, from an intuitive point
of view too. In the one-dimensional problem the differ-
ence is more subtle: a wave function component slower
than the average has a greater weight in the calculation
of the time of presence at a position z; because it is not
vanishing for a long time in z;; on the contrary, it has
less weight in the time of passage through z,, because
only the probability current is involved. It can easily
be shown that, if the spread in momentum of the wave
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function tends to zero, the difference between the times
of presence and of passage correspondingly vanishes.

IV. CONSISTENCY CHECKS
A. Space partition

We are going to show an interesting relation between
the stay times in different regions of space which is a first
consistency check of our approach. Let us make a parti-
tion of the physical space in 7 regions Q; (j = 1,...,n)
with no restrictions as to whether they are limited or un-
limited (of course, at least one has to be unlimited). On
each region 2, at time ¢y, we add a perturbative poten-
tial V;; the particle now obeys the Schrédinger equation

9

Ho¥ + ) Vju(t — to)Oq, (r)¥ = ihs.

i=1

. (41)

In this case ¥ depends on each V;, but we wish to avoid
explicitly stating this.

On the basis of previous results, i.e., of (2.6), if the
particle is in ry at time t;, its mean stay time in §;
(7 =1,...,n) from time ¢ to ¢; is

_ th 0¥
Tj(to’rl,tl)_Re{EéTf;} lV[:O (4.2)
=1,...,n
Since we have (see Appendix A)
= . 0V
Y ik = (t — to)u(ts — to) ¥, (4.3)
&

we can divide each term by ¥ and take only the real part,
so that we obtain

Z" ih 0¥
e {%517} = (t1 — to)u(ts — to).
=1 7

Evaluating this expression for V; = 0, j = 1,...,n,
and for t; > tg, from (4.2) we obtain

(4.4)

n
ti =1t + Z?j(to; r1,t1);
i=1

(4.5)

that is, the time elapsed from t, to t; is equal to the
sum of the stay times spent in each region into which
the whole space is partitioned by the particle found in ry
at t;. Equation (4.5) is a first fundamental consistency
check for our approach.

B. Relation between stay time and time of passage

From (4.5) we can derive a relation between the time
of passage and the stay time that will be useful in the
study of tunneling times. Let us consider an infinitesimal
surface dS centered in r; and orthogonal to versor n. We
have seen that dP = J(ry,t) - ndSdt is the probability
that the particle traverses dS in the time interval (t,t +
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dt). If we want to know the mean stay time 7}_ (to) in ;

of a particle passing through a surface I" from ¢ onwards
we have to perform an integration on time and on T, so
that we have

ft:o Jr Ti(tos rl,t)J(rl,t) -ndS dt
-f f[‘ r17 ndS’dt ’

and, from (3.7), (3.8), (4.5), and (4.6) we can write

7i_(to) =

-T oL
t (to,00) = to + Z wa (to); (4.7)
i=1

then the mean time of passage through I' equals ¢y plus
the sum of the stay times from ty onwards in each region
into which the space is partitioned.

For a one-dimensional space, I' reduces to the plane
T = x1, so that we have

-r —
t (to,00;11) :t0+ZTjoo(t07m1)’ (4.8)
i=1
where
75 (to; z1,t)J (21, t)dt
Tjw (to,T1) = fto ! (4.9)

Jo I(za, t)dt

C. Relation between stay time and dwell time

In the case of a stationary wave function, the time
spent by a particle in a region  was introduced by
Smith?® as the ratio between the probability of find-
ing the particle in 2 and the incoming probability flux.
Biittiker,!” in the one-dimensional case [when Q is the
interval (a,b)], defined this time, usually referred to as
the “dwell time,” as

b
oy = ;/ Wo(z)2dz, (4.10)

where J is the incident probability flux.  Several
authors?%27 extended the definition of dwell time to the
case in which ¥, is a wave packet,

ty b
TD1aim (t0, t1) E/ dt/ |Wo(x,t)|?dz;
to a

is the time spent

(4.11)

where ¥y now is normalized and 7p,,
in (a,b) from time to to ¢; .

We can now straightforwardly generalize 7p,,;  to the
three-dimensional case in the form

t1
Tp(to,t1) E/ dt/ |@o(r,t)|dr.
to Q

The aim of this section is to show that the stay time of
(2.6) is consistent with the dwell time in (4.12).

If the particle is found in ry at time ¢, it stayed in §2
for a time 7T(tp;ry,¢1) given by (2.6). If we do not know
where the particle is at time t;, the mean time spent in
Q is an average Tan(to,t1) of T(to;r1,t1) over all values

(4.12)
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of ry, weighted on the probability that the particle is in
r, i.e.,

J T (to;r1,81)[Wo(r1, t1)]*dry
[ 1%o(r1,t1)|?dry '

where the integrals are over the whole space, in order to
cover all possible positions occupied by the particle.

Now let us show that (4.13) is equal to (4.12). The
denominator of (4.13) equals 1 because ¥y is normalized.
Then from (2.6) we obtain

ﬁ(to,tl) = (413)

Tall (tO ) tl

/|‘I’ 0 to,l‘l,tl)l

8S(V, I‘l,tl)
X =7

v dl‘l. (414)

V=0

The integral in (4.14) is over the whole space and ¥ is
absolutely summable, so

Tan(to, t1) = /‘I’*(O,to;rhh)iﬁ

% B\II(V, to;l‘l,tl)

> dry. (4.15)

V=0

The perturbation theory applied to the path integral
technique gives!®

v o[h
\p(v>t0;r17t1) = ‘I’(O,to;l‘l,tl) — 'LE/ dt
t

o

X / drk(0;rq,t;1,t)
Q

x¥(0,to;T,t) + O(V?), (4.16)

where O(V?) is a second-order infinitesimal with respect
to V, so that we have

7]

5—‘;‘1’(Vato;l'17t1)

V=0

. ty
= —%/ dt/ drk(0;rq,t1;1,t)U(0,t0;r,t). (4.17)
t Q

Substituting this expression in (4.15) we can write
t1

Tan(to,t1) Z/drl‘l"(O,to;l'l,t1)/ dt

to
X / drk(0;r1,t1;1,8)U(0,t0;T, ).
Q
(4.18)

Equation (4.18) leads straightforwardly to (4.12), i.e.,
Tall = Tp, if we remember that!®

/dl‘l\I"(O, to; ry, tl)k(O; ry, tl; r, t)

= ¥*(0,to;1,t), (4.19)

and ¥(0,¢o,r,t) = ¥o(r,t). This is a further check of the
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validity of our method.

For subsequent applications, it should be noted that,
if we are interested in a mean 74(to,t1) of 7(to;r1,%1)
restricted to a region A of possible positions where we
can find the particle at time t;, in the place of (4.13) we
have

J4T(to;T1,81)|¥o(ra,t1)|2dry

7a(to,t1) = T 1%o(r1, t1)[2dry

(4.20)

V. CHARACTERISTIC TUNNELING TIMES
A. Reflection and transmission times

On the basis of the results of previous sections, we
are able to define and calculate the tunneling time of a
potential barrier. To this end let us consider the one-
dimensional problem, with a time-independent potential
Vo(z), nonvanishing only for 0 < = < d, of the type
sketched in Fig. 1.

Let the normalized wave function ¥o(z,t) of the par-
ticle at time to be substantially confined in =z < 0, i.e.,
ffoo |®o(z,to)|2dx ~ 1, and let it be a wave packet whose
components are moving to the right with an energy that
is lower than the barrier height. After o, the packet
moves closer to the barrier, undergoes scattering, and
splits into a packet transmitted across the barrier and
into a reflected one.

The probability T, (1) that at a time ¢, the particle
is found to have crossed the barrier is

T (t) = [ 1¥o(et)Pds, (5.1)

the probability Ry, (¢1) that the particle is found to have

Vol¥) ’\
['Fo(x, 0)|

t=1n

M) ()

Volx) N

IlFR(xatl)l

N\

FIG. 1. (a) At time to the particle is described by a wave
packet which is substantially confined in z < 0 and moves to
the right. (b) At time t; the interaction between the wave
function and the barrier is substantially exhausted and we
have a transmitted packet in z > d and a reflected packet in
z < 0.

0d x
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been reflected back by the barrier is

Rtl(tl) = /0 |\I’0((L‘,t1)‘2d1‘, (52)

and, finally, the probability I, (¢;) of finding the particle
inside the barrier is given by

d
L () = / Wo(, 1) 2de. (5.3)
0
Since ¥y is normalized, we have
Rgl (tl) + It1 (tl) + Tt1 (tl) =1. (54)

Let © be the barrier region (0 < =z < d); the time
7(to; z,t1), given by (2.6), is the time spent in the barrier
region by the particle found in z at time ¢;. If position z
is on the right of the barrier, the particle has crossed the
barrier; if = is on the left, the particle has been reflected
back.

The average 7r(to,t1) of T(to;z,t;1) over all possible
positions on the right of the barrier, corresponding to a
particle which has crossed the barrier at ¢;, according to
(4.20) is

f;o T(to; z,t1)|To(x, t1)|?dx
f;o |‘I’0(I,t1)|2d1‘ ’

TT(to,tl) = (55)

while the average Tg(to,t1) over all positions on the left
of the barrier, corresponding to a particle which has been
reflected back at ¢, is

[0 T(to; 2, 81)| ¥o (2, t1)[?dz
TR(to,tl) = 0 .
f—oo I‘I’o(ﬂ:, tl){zda:

(5.6)

The mean stay time in (0, d) of a particle still in (0, d) is

f: T(to; z,t1)|Po(z, t1)|%dz

Tj(to,tl) = (5.7)
J3 1 Wo(z, t1)|2de
From (4.13) and (5.3)—(5.7), we obtain
Tal(to,t1) = Ry, (t1)7Tr(to,t1) + Iy, (t1)7r(to, t1)
-HI;;1 (tl)TT(to,tl). (58)

In the case of t; — oo, since the wave function is not spa-
tially confined, we have that Iy, (¢1) and I, (¢t1)71(to,t1)
go to zero (see Appendix B).

Then, by defining R = limy, oo Ry, (t1) and T =
limg, 00 T, (t1), (5.4) and (5.8) become, respectively,

R+T=1, (5.9)

TD(to, OO) = T—aﬁ(to, 00) = RTR(to, OO) + TTT(to, OO),
(5.10)

where we have taken into account the previous re-
sult according to which 7p(to,t;) = Tan(te,t1). We
call 7g(to,00) and 77(to, o0) reflection and transmission
times, respectively, while R and T are the reflection and
transmission probabilities, respectively.
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Condition (5.10) is usually considered to be a cru-
cial consistency check for any definition of tunneling
time.*26:28 However, some criticism of this argument can
come if one does not accept the dwell time as the mean
time spent in the barrier by all incoming particles,?® or
if one does not consider tunneling and reflection times
as meaningful concepts, and, at least in principle within
conventional interpretations of quantum mechanics, as
measurable quantities.?3 As we have shown in this sec-
tion, as well as in Secs. II and IV C, this is not our case.

Moreover, (5.10) is not based on a decomposition of the
probability density inside the barrier into “to be trans-
mitted” and “to be reflected” components, which is con-
sidered impossible within conventional interpretations of
quantum mechanics?? or responsible for the presence of
nonclassical interference terms.3! On the contrary, the
dwell time and the tunneling and reflection times are ob-
tained by proper integration in space of the stay time
[based upon (4.13) and (4.20)] at a time ¢; which tends
to infinity; at that time we can certainly distinguish be-
tween “been trasmitted” and “been reflected” compo-
nents of the wave function (in fact they are separated
in space, i.e., the trasmitted component is in > d, the
reflected one in z < 0), so it is straightforward to obtain
the decomposition (5.10) of the dwell time.

Equation (5.10) actually is a probabilistic condition;
the particle crosses the barrier with probability 7', and
can be reflected with probability R = 1—T; in the former
case it spends in Q a time 7p, in the latter case a time
Tr. Equation (5.10) gives the time spent in Q from ¢,
onwards averaged over all particles by simply applying
the laws of conditional probability.

B. Are reflection and transmission times meaningful
quantities?

Now we wish to address a question that involves the
uncertainty principle and transmission and reflection
times. Dumont and Marchioro® assert that the uncer-
tainty principle does not allow us to determine separate
transmission and reflection times, because their calcula-
tion involves the simultaneous measurement of noncom-
muting observables.

This claim, indeed, is based upon the fact that, when
they try to decompose the dwell time corresponding to
a given energy in terms of an outgoing-channel-specific
basis, they obtain a cross term [see (14) of Ref. 9]. The
cross term, as a matter of fact, is just an evidence that
their particular attempt of decomposing the dwell time
fails. However, this result is not general and, therefore,
one cannot deduce from it that any other decomposition
has to fail.

Moreover, Dumont and Marchioro assert that their
candidates for transmission and reflection times “can-
not have the desired interpretation because they are not
specific to an initial state incoming from the left.” So,
other candidates could be well suited for obtaining the
desired decomposition. Our definitions of transmission
and reflection times, as a matter of fact, are specific to
a particle incoming from the left and allow us to write
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the required decomposition of the dwell time (5.10) into
separate transmission and reflection times.

C. Different approaches to tunneling time

In this section we examine two methods for calculat-
ing the tunneling times that have been proposed by other
authors and that lead to different conclusions. Neverthe-
less, they come within the framework of our approach.

1. Phase time

The phase-time method was proposed by Wigner®? and
by Hartman'® and has been widely reexamined.*33 The
situation is the one shown in the previous section: the
wave packet, moving to the right and still in z < 0 at
time to, in the course of time, say t;, breaks up into
a transmitted packet [referred to as Up(zy,t1)] and a
reflected packet [referred to as Wpg(z1,t1)]. If there were
no barrier at all we should have a wave function, say ¥;,,
which is the initial packet still freely moving toward the
right.

The phase-time method consists basically in defining
the tunneling time as 7¢ = tout — tin, Where t;, is the
time at which ¥;,. reaches position z = 0 [Fig. 2(a)] and
tout is the time at which ¥r reaches z = d [Fig. 2(b)].
The instant #(Z) at which a wave packet reaches a given
position & is determined in one of the following ways:

(i) as the time at which the peak of the packet is in Z;
this is the original idea of phase time;!332

(i1) as the time at which the center of mass of the wave
packet is in &;33

(iii) as the time of passage through position £ defined
by (3.9).

The original idea (i) of phase time works for pack-
ets which are narrow enough in energy to make the

lr‘/|
| t —_ tln
lI“il’lC I
[Wine| ' (@)
'
Z ] g
X
Vol¥) b= Tou )
[\Fr|
0 d X

FIG. 2. The phase-time method consists basically in defin-
ing the tunneling time as 74 = tout — tin, Where (a) tin is the
time at which the packet would be in £ = 0 if there were no
barrier at all, and (b) tou is the time at which the transmitted
packet would be in z = d.
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stationary-phase approximation suitable. It has been
demonstrated®® that in this situation method (ii) pro-
duces the same results as (i). Now we shall show that,
in the same case, the time of passage method (iii) gives
equal results with (i) and (ii).
Let us write the wave function at time ty in the form
Bo(z, to) = / 9(E — B)e?e—=)/"qg (5.11)
where p = (2mE)'/2, E is the mean value of energy,
and g(E — E) is a real function that is nonvanishing only

if |[E — E| is small enough to keep the stationary-phase
approximation valid. These initial conditions give

Winc(z,t) = /g(E _ E)eip(z-zo)/ﬁ

xe BE-t)/G R, (5.12)
while the transmitted packet is
Yr(z,t) = / 9(E — E)a(E)eP=—=o—d)/h
xe~BU-t)/AdE, (5.13)

for z > d, a(FE) being the transmission coefficient for
energy FE.

Now t;, is the mean time of passage at £ = 0 from ¢,
onwards, i.e., from (3.9),

Jo tJinc(0, t)dt

T
tin = £y (to, 00;0) =
" lnC( 0 ’ ) L;w Jinc(()’ t)dt ’

(5.14)

where Jji, is the probability current density of ¥;,.. Sub-
stituting (5.12) in this expression yields

. [ 9*(E - E) [top(E)/m — zo|dE ~fo ﬂ’

[ ¢*(E — E)[p(E)/m]dE v
(5.15)

where v = p(E)/m is the average velocity of the wave
packet.
Similarly, for ¥, we obtain

da

-
tout = tr(to,00;d) = A —— (5.16)
! 9E|p-g

T
——9+t07
v

where a(F) is the argument of a(FE). Therefore, from
(5.15) and (5.16), the phase time becomes

Oa

~h—
m aE

Te = tout — (517)

i.e., by means of method (iii), we can obtain the phase
time found by other authors.%13:32,33

It should be noted that t;; and t,4¢ are calculated in
different conditions: for t;, we have a free-moving packet,
while for £,,¢ we must consider the presence of the barrier.

If one identifies the phase time with the actual tun-
neling time, one implicitly assumes that the mean time
at which a particle crossing the barrier reaches z = 0 is
equal to the one that we obtain when no barrier exists;
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in other words the barrier in 0 < z < d would not affect
particle motion for z < 0. Our approach makes it possi-
ble to show the error of this assumption. Let us split the
z axis into three regions: Q; (z < 0), Q; (0 < =z < d),
and (3 (z > d). Let us consider the particle described
by Winc; let 7155 be the stay time in Q; averaged as in
(4.9), and 7ing _ the stay time in the region made by the
union of Q3 and Q3 (i.e., z > 0).
From (4.8) we obtain

T
tin= tinc(to’ 005 0)
= to + T1se (£0; 0) + T5500 (f03 0).- (5.18)
Remembering that ¥;,. represents a wave packet freely
moving toward the right with the center of mass in z = z,
at time tg, we easily obtain

Fine (40.0) ~ “;" (5.19)
and
7ine o (t0,0) = 0. (5.20)
Now consider ¥r: from (4.8) we get
tous = Ep(to, 005 d) = to + Trog (to, d)
+T 300 (t0, @) + Tano (to,d),  (5.21)

where T;‘rw denotes the stay time in §2; averaged as in
(4.9).

The mean stay time in the barrier of the tunneling
particles is 73 _(to,d). It is the tunneling time, and it is
easy to verify that in our case it equals the value given
by (5.5) when ¢; tends to infinity.

From (4.9) and (5.13) we obtain

P o oa  ~

77 (to,d) —— —h —(FE , 5.22
lm( 0 ) v avl( ) Vi=Va=Vs=0 ( )

T — —
T3, (te,d) = fi v, (E) v , (5.23)

da

T _ el
73, (to,d) ~ —h 8V3( s (5.24)

From (5.19) and (5.22) we see that the times spent in
Q, in the two different situations are not the same. The
difference between them is

AT = Tfm (to, d) — —"‘c e (t0,0)

— 8V1 ievico (5.25)
Finally we have

Te = Tauo (to, d) + AT, (5.26)
with

AT = ATy + T2 (to,d). (5.27)
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The phase time is not equal to the tunneling time;
rather, it is the delay in the motion of the particle due
to the presence of the barrier. A part of this delay is the
actual tunneling time (that spent in the barrier region);
the other part is the one represented by Ar.

This additional delay has also been found in other
studies,®26 in expressions linking together the phase time
and the dwell time [for instance (4.4) of Ref. 4], and has
been referred to as self-interference delay. Our approach
makes it possible to split this delay into a component
AT, corresponding to a time spent in the region before
the barrier, and a component 73_ (to, d) corresponding to
a time spent in the region behind the barrier.

2. The oscillating barrier

This method was introduced by Biittiker and
Landauer.'43435 Let us consider the potential outlined
in Fig. 1 and let the interval (0, d) be the region . The
idea of Biittiker and Landauer consists in superimposing
an oscillating potential V; coswt on the region 2.

The total potential is

V(z,t) = Vo(z) + V1Oq(z) cos wt. (5.28)

The incident particle is expressed as a monochromatic
wave function of energy F.

As a consequence of barrier modulation the resulting
wave function includes sidebands with energy E + nAw.
The components of energy E + nfw correspond to the
absorption of n modulation quanta by the particle, while
those of energy E — nhw correspond to the emission of
n quanta. To first order in V; only the components E,
E + hw, E — hw are meaningful.

Let us use T to indicate the intensity of the transmit-
ted components of energy E + fw, and T to indicate that
of the component of energy E. The ratio between these
components, to first order in V; and for w approaching

zero, is
Ty ViteL 2
=+ - 5.29
£ ( T ) , (5.29)
where
109
8L = A= =+ . 5.30
- jwl . (5.30)

The equations are taken from (3.7) and (4.4) in Ref. 34.

Biittiker and Landauer state that 7gp is the charac-
teristic time of the interaction between the particle and
the barrier and identify it with the tunneling time. It
should be noted that the square of g1, exactly equals
the mean square stay time in the barrier region given
by (2.7), considering that the dependence of 72 on to,
ry, and t; vanishes for monochromatic wave functions.
Moreover, the square of 7L, appears in (5.29), so that it
seems more plausible to give 72; the meaning of mean
square tunneling time rather than to identify 7gp with
the mean tunneling time.
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VI. OPEN PROBLEMS

In the case of tunneling through a potential barrier,
our approach leads to the same tunneling time as Ry-
bachenko’s method.'51¢ As has been noticed,?® this time
depends slowly on the barrier thickness so that, if the
barrier is thick enough, we have mean traversal velocities
larger than the speed of light. No postulate has been
violated as long as we deal with nonrelativistic quantum
mechanics.

In order to obtain an expression for the stay time in
a relativistic framework, we have to use relativistic path
integrals, in such a way as to have a new expression in
place of (2.18). Unfortunately, the extension of Feyn-
man’s method to the Hartree equation or to the Dirac
equation needs the introduction of a fifth parameter (be-
sides position and time) that complicates the formalism
and makes us no longer able to associate a stay time in a
given region to the four-dimensional paths obtained (po-
sition and time as a function of the fifth parameter).

The problem needs deeper analysis. It is undoubted
that we cannot simply substitute the transmission ampli-
tude obtained from the Dirac equation in expression (2.6)
of the stay time, as Leavens and Aers?® have done. Equa-
tion (2.6), indeed, has been derived from (2.18), whose
validity must be verified on the basis of relativistic path
integrals.

It could also be possible that velocities greater than
the speed of light in the computation of barrier traversal
are an effect of quantum nonlocality.3® Further study is
needed in this direction.

Another problem has been pointed out by Leavens and
Aers?® for the case of the Larmor clock method, but af-
fects our approach also. In order to show it let us refer to
the situation of Fig. 1: the point is that if we calculate
the time spent by a reflected particle in a region situated
to the right of the barrier, we obtain a time which is not
zero. If on the right of the barrier the potential is zero
everywhere, common sense suggests that a particle that
spends some time in a region situated to the right of the
barrier will continue its motion toward the right, and will
not be reflected back.

It should be noticed that, when we apply the perturba-
tive potential to the region, we introduce a discontinuity
in the potential at the frontier of the region. Even when
the perturbative potential is zero, the field is still infinite,
because the potential varies by an infinitesimal quantity
over a distance which is exactly zero.

There is the possibility that our problem is just a side
effect of the discontinuities we introduced; in other words,
that particles that have traversed the barrier are then re-
flected back by these potential discontinuities, and that
this effect is not negligible if the actual potential of the re-
gion is uniform (i.e., there are no other causes of scatter-
ing). However, we agree with Leavens and Aers?® when
they say that further study of Wigner trajectories (and
perhaps also Bohm trajectories) will decide if this prob-
lem is another example of quantum nonlocality, or if the
Larmor clock approach (and our approach) is applicable
to a narrower extent in the case of tunneling. Up to the
present it seems that Wigner trajectories are not useful
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for this problem.3” Bohm trajectories have been exten-
sively studied,®® and it appears that there is no reentrant
trajectory; nevertheless, it could be interesting to see if
an infinitesimal potential on the far side of the barrier
might significantly perturb electron trajectories.

VII. CONCLUSIONS

The method which we have proposed allows a general
analysis of characteristic time quantities in the motion
of a quantum particle. These quantities have only a sta-
tistical meaning and our method makes it possible to
define and calculate any order moment of their distribu-
tion. We have shown that the stay time approach gives
results which are totally consistent with the dwell time
and other event times, in particular the time of presence
and the time of passage, and, moreover, it is a suitable
tool for explaining and analyzing characteristic times ob-
tained with other methods.

In detail we have applied our method to the tunneling
time problem. The time we obtain satisfies the consis-
tency requirements established by Hauge and Stgvneng?;
it is a real quantity and complies with the required proba-
bilistic condition. We have shown that there is no need of
considering complex valued averages, whose role is still
unclear. Furthermore we have shown that the time of
passage can be used for obtaining the phase time and to
see that the phase time is not the tunneling time, rather
it is the total delay in the wave packet motion due to the
presence of the barrier, of which the time spent inside
the barrier is merely a part.

The possibility of calculating the mean square tun-
neling time sheds light on the meaning of Biittiker and
Landauer’s time 71, obtained with the oscillating barrier
method. In our opinion it is more plausible to consider
74;, the mean square tunneling time rather than 7gy, the
mean tunneling time. This opinion is supported by the
fact that Biittiker and Landauer give a definition of 73,
and not of 7gy,.

Our method for defining and calculating the stay time
rests on Feynman’s path integral approach, as does the
method by Solokovski and Baskin.!® These authors ob-
tain a complex time whose real part equals the mean
stay time and whose imaginary part equals the standard
deviation of our stay time.

The Larmor clock method introduced by Ryba-
chenko!® and Baz'® gives a tunneling time equal to the
one found by us, but it does not explain the results ob-
tained by using other methods. Moreover, the only at-
tempt at using the Larmor clock method for calculating
the second moment of the distribution, which was made
by Baz’, is relevant to a very particular case of unity re-
flection probability and of a time distribution which is a
é function.

The general and versatile nature of the method de-
scribed here makes it reliable and useful for several ap-
plications, and it is effective as a framework for including
and/or explaining time quantities reported in other stud-
ies.
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APPENDIX A

We can rewrite (4.1) in the form

9
at

H, U =ik

v, (A1)

where

H, = Ho+_ Vu(t — to)®q, (r).

i=1

(A2)

If at time tp we impose a uniform potential W over the
whole space, (A1) becomes

N 7]
[H,, + Wu(t — to)] o =iho, (A3)
of which we now seek a solution of the type
o =f, (A4)

where f(W,t) is a function depending upon W and ¢

alone; moreover we need f(W,ty) = 1 (VW), because

W is imposed at time to and p(to) = ¥(to)-
Substituting (A4) in (A3) we obtain

FH,U + Wu(t —to) f¥ = iﬁf%\ll + iﬁ@%f, (A5)

and then from (A1) we get

Wu(t —to)f = i}i%f. (AS)
The solution of (A6), with the initial conditon f(W,to) =
1, is

F(W,t) = exp [—3W(t — to)u(t — to)| -

. (A7)

Therefore, superimposing a potential W over the whole
space has the same effect as adding a quantity W to the
potential V; in each region partitioning the space; that
is, from (A4) and (A7) we obtain

p=Y(VL+W,...,V, + W)
— exp [—%W(t — to)u(t - to)] (Vi ..., V),
(A8)
from which we finally get (4.3) in the form

Se _ 0¥ ——%u(t —to)(t — to)T.

W ~ LsdV; (A9)
=17
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APPENDIX B

For the potential sketched in Fig. 1 the wave function
is not spatially confined, so that it has a continuous spec-
trum of energy eigenvalues, and it can be written in the
form

+oo ;Et
Bo(a,t) = f &(z, B)e'3 dE, (B1)

— 00

where ®(z, F) is limited Vz. In our case we have wave
functions with a finite energy band, i.e., with ®(z, E) =0
for E > [Vo(z)]max, so that

/ﬂo |&(z, E)|2dE = P,

— 00

(B2)

where P is a real positive number.
The Parseval theorem now implies that
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+oo
/ \U(z,t)|dt = 27hP,  Va. (B3)

— 00

The convergence of this integral implies that |¥(z,t)|?
goes to zero as t — 0o more rapidly than 1/, i.e.,

EnilwIW(m,tl)|2t1 =0. (B4)

t1
On the basis of the definition (5.3) of I, (t1) and consid-
ering that 0 < 77(to,t1) < t; — to, we finally obtain the
relations

m I (t) =0, (B5)
and
tll—ig:loo It1 (tl)’r](to,tl) = 0, (BG)

that have been used to write (5.9) and (5.10).
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