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Abstract. We have developed a Monte Carlo simulator of the electromigration process in
polycrystalline metal stripes. Stripes with different average grain size can be generated with
Voronoi tesselation, and mapped onto a network of resistors. The proposed model includes
the major role played by grain boundaries and by the current density redistribution within the
stripe following void formation. Simulations of stripes with different grain sizes and different
widths are shown, and a few expressions for the failure probability are compared on the basis
of their capability of reproducing the experimental results. In addition, electromigration noise
has been computed, recovering the characteristic 1/f γ (γ ≈ 2) behaviour. The substantial
qualitative agreement between our calculations and the experimental results is a convincing
test of the capability of the model proposed to include the relevant physics.

1. Introduction

The capability of modelling random defects and failures is
emerging as a major issue in device and process modelling.
Indeed, it could provide information significant from a
statistical point of view on dispersion of device and circuit
parameters and on reliability problems.

In this paper, we focus on the simulation of the
electromigration process in polycrystalline metal lines, which
is a major problem for the evolution of ULSI technology:
as the widths of metal interconnects shrink and current
densities increase, failures induced by electromigration can
occur in relatively short times and reduce considerably the
average circuit lifetime. Many efforts have been made
to understand and control the electromigration process, by
means of experiments [1–3] and theoretical modelling [4–7].
Experiments have allowed us to establish the major role
played by atom diffusion along external surfaces and grain
boundaries [1]. Gungor and Maroudas [7] have modelled
generation of voids along the external surfaces and their
successive propagation within a single grain in bamboo-like
structures. We consider the case in which damage starts
and evolves from grain boundaries, with the main objective
of reproducing the resistance evolution of polycrystalline
metal lines subjected to current stress. We have developed a
Monte Carlo simulation code which takes into account both
the polycrystalline nature of the metal line and the current
density redistribution effect due to void enlargement. Even if
this approach has sometimes appeared in the literature [4, 6],
the main focus has been usually put on the mean time to
failure, which is dominated by the random final catastrophic

failure and provides only partial information on the entire
electromigration process. Instead, we simulated the complete
evolution of the damage, in order to gather information on the
whole process, and in particular on the initial phase, where the
total resistance increases by only a few percent. Moreover,
this approach permits us also to simulate the noise spectrum,
which can be compared with the typical 1/f γ noise which
has been observed in many electromigration experiments [8].

2. Model

The simulations were performed on samples of polycrystal-
line metal films generated by means of a nucleation and
growth algorithm [6] from which rectangular stripes of
different dimensions were obtained. These polycrystalline
stripes are discretized into a square lattice of uniformly
spaced nodes, connected with resistors (as shown in figure 1).

Every crystal of the polycrystalline film is represented
by a convex cluster of connected nodes. The resistors of
the network have the same resistance and are divided into
two classes: resistors connecting nodes in the same crystal
grain (‘bulk’ resistors) and resistors crossing a grain boundary
and connecting nodes from two adjacent grains (‘boundary’
resistors) which are represented with thin and thick lines in
figure 1, respectively.

The stripes are then stressed with a constant current
stimulus. The flow-chart of the simulation procedure is
shown in figure 2. The main cycle consists of two phases:
first, the total resistance of the network and the currents in
each resistor are computed by solving the electrical problem
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Figure 1. Grain structure (above) and corresponding resistor
network (below). Thick-line resistors are those traversing grain
boundaries (‘boundary’ resistors).
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Figure 2. Flow-chart of the simulation program.

with a successive over-relaxation method with Chebishev
acceleration [9]. In the second phase all the boundary
resistors of the network are sequentially examined: the ith
boundary resistor, in which flows a current Ii , has a failure
probability given by:

Pf i = A(exp(Ii/I0) − 1) (1)

where A and I0 are constant during the simulation. Then,
each failed resistor is considered and possibly repaired with
a fixed probability Pr .

At the end of this phase, resistor properties are updated:
failed resistors are removed from the network; resistors
contacting a failed resistor become ‘boundary’ resistors;
repaired resistors are re-inserted in the network as ‘boundary’
resistors. Then, as shown in figure 2, time is increased and
the cycle is repeated, until the total resistance of the network
becomes greater than a certain value.

The choice of the failure probability of equation (1) and
of Pr is somewhat arbitrary, and based on phenomenological

arguments. First, we want to force damage to evolve along
grain boundaries, therefore we allow only boundary resistors
to fail; second, failures must be activated by current, since we
need to introduce a positive feedback that leads to the abrupt
failure of the whole stripe. The exponential law warrants that
as a small region of the stripe is damaged, resistors close to
that region experience a current increase which exponentially
increases their failure probability, so that the damaged region
typically grows at an accelerated rate until the stripe is open-
circuited. A comparison of the effects of different choices of
(1) is presented in section 3. The choice of Pr is based on
the assumption that repairs are due to atom thermal diffusion
and is consequently independent of current.

Although in an electromigration test the temperature of
the stripe can be rather higher than that of the substrate and of
the environment, the temperature gradient in the stripe itself
is very small and consequently we have not included in the
model the temperature dependence of the failure probability.
The value of the parameter A is chosen in such a way that on
average there is less than one failure per simulation cycle.

3. Results

The structure of the first stripe we consider is shown in
figure 3: it is mapped onto a resistor network of 30 × 200
nodes, and grains have an average area of 400 nodes. The
simulations have been performed with IAV /I0 = 2, where
IAV is the average current per longitudinal resistor and
is therefore proportional to the stimulus current density.
Each simulation is performed in about 30 minutes on a
Pentium II Linux PC, and provides the time evolution of the
resistance R(t), along with the number of failed resistors
per simulation cycle. In figure 3 R(t)/R(0) is plotted for
three different Monte Carlo runs until complete failure. The
computed evolution of R(t) is qualitatively very similar to the
experimental behaviour: there is an initial phase in which
the resistance increases linearly, until it is a few percent
larger than the initial value, and a second phase in which
the resistance increases in large and irregular steps until
the catastrophic failure. While the initial phase is well
reproducible among different Monte Carlo runs, the second
phase exhibits large differences from run to run, and also the
failure time has a very wide distribution.

It is very interesting to ‘see’ the formation of a void
in a stripe. In figure 4 the snapshots of dissipated power
density are plotted on a grey scale for the run of figure 3
which has the smallest failure time (thick line). A black
dot corresponds to zero power density, while a white dot
corresponds to maximum power density. Each snapshot is
marked by the corresponding time instant T . As can be
seen, in the initial phase failures occur at random in the
stripe, exhibiting no particular correlation. Then, when a
few adjacent failures occur, the currents flowing in the nearby
resistors increase, and consequently their failure probabilities
increase. At this point the second phase starts: the void
enlarges at an increasing rate (note that the latest snapshots
are much denser in time) until complete break-up of the stripe
occurs. This behaviour is reproduced in all Monte Carlo runs,
while the position of the critical void depends on the particular
run.
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Figure 3. Grain pattern of the considered stripe (above) and stripe
resistance as a function of time until complete failure for three
different Monte Carlo simulations (below).
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Figure 4. Snapshots of dissipated power density for the time
evolution shown with a thick line in figure 3.

In order to reproduce the experimentally observed
catastrophic behaviour, it is absolutely required to include
a positive correlation between failures in adjacent resistors,
because this mechanism causes the void growth. As we
have said, we have done so by assigning to each resistor a
failure probability exponentially dependent on the current.
In this paper we will not address the problem of what
is the particular physical mechanism leading to such an
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Figure 5. Time evolution of the normalized resistance of stripe
shown in figure 3 for a failure probability depending on the current
according to an exponential law (I), quadratic (II), linear (III).

expression; rather, we will justify our choice on the basis of
phenomenological arguments, showing that smoother laws
are not able to reproduce the time evolution of the stripe
resistance observed in experiments. We have computed
the time evolution of the stripe shown in figure 3 for three
different relationships between the failure probability and
the current density: (I) Pf i given by (1), (II) Pf i = BI 2

i ,
(III) Pf i = CIi . The coefficients are chosen in order to have
the same value of Pf i at time zero in all cases. The results of
a single Monte Carlo run for each case are shown in figure 5.

As can be seen, a common evolution is observed for the
three cases in the initial phase, when there are only a few
failures and the values of Pf i are still very close to the initial
ones. The evolution in the final phase, instead, is completely
different: with the linear law (III) the correlation between
adjacent failures is too weak, and the resistance increases
almost linearly up to 130% of its initial value, and after then
only slightly super-linearly. Even with the quadratic law (II)
the R(t) increases linearly up to 1.2 R(0), and then undergoes
the steep increase that leads to the catastrophic failure. In
experiments [2, 3, 11] the final failure is observed after an
increase of only a few percent above R(0), better reproduced
by (1).

Since voids can only form and grow at grain boundaries,
the grain size must play a major role in determining the
damage rate and, consequently, the failure time. In our two-
dimensional case, for given width and length of the stripe,
the number of ‘boundary’ resistors—and therefore the initial
damage rate—is inversely proportional to the square root of
average grain area.

Figure 6 shows the results of three Monte Carlo
runs for each of three different average grain sizes, i.e.
average number of nodes NG included in a single grain:
(a) NG = 400, (b) NG = 100, (c) NG = 25. The
corresponding grain structures of the stripes are shown in
figure 6 and are mapped onto a resistor network of 30 × 200
nodes. The initial phase of the evolution of R(t) is rather
reproducible for each type of stripe, and, as can be seen,
the increase rate of R(t) is roughly proportional to 1/

√
NG.

Although only a small number of Monte Carlo runs are
considered, it is apparent that the failure time increases
with increasing grain size, as expected and known from
experiments.
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Figure 6. Stripe structures with three different average grain sizes
(above) and normalized resistances as a function of time for three
different Monte Carlo runs (below) for stripe (a) (thick lines),
stripe (b) (thin lines), stripe (c) (dashed lines).

Additional information on this aspect can be obtained
from the noise spectrum of R(t) in the initial phase: it is
well known from experiments [2, 3, 8, 11] that the spectral
density of the noise associated with electromigration has a
characteristic 1/f γ behaviour. Experimental values of γ
collected from 20 published papers are shown in table 1
of [8]: γ is found to be between 0.7 and 2.3. However,
measurements at frequencies smaller than 1 Hz, which are
able to better isolate fluctuations due to the electromigration
process from other sources of noise [8], consistently yield a
value of γ close to 2.

Since the resistance R(t), on average, increases linearly
with time and we are interested only in the spectrum of
fluctuations, we first obtain RN(t) by subtracting from R(t)
the least squares fitting line, and then compute the power
spectral density SRN(f ) of RN .

Figure 7 shows the average resistance noise spectra
obtained from the Monte Carlo runs of figure 6 (each
average is performed over the three runs corresponding to
the same stripe). The plots are translated vertically in order
to avoid overlap: actually, for a given frequency the noise
power spectral density is roughly proportional to 1/

√
NG, as

expected. In all cases SRN(f ) ∝ 1/f γ , with gamma between
1.96 and 2.

The noise spectrum is strongly dependent on the stripe
width: in narrower stripes, a single failure leads to a larger
increase in the total resistance. Figure 8 shows the noise
spectra obtained from stripes with different widths: (a) is
represented by a network of 90×200 nodes, (b) by a network
of 30 × 200, (c) by a network of 10 × 200 nodes. For all
three samples the grain average area was set to 100 nodes,
corresponding to an equivalent diameter of 11 nodes. The
resistance noise spectra are averaged from three different
Monte Carlo runs. The γ exponents obtained from a least
squares linear fit on the logarithmic scale are, again, between
1.96 and 2.
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Figure 7. Electromigration noise spectra for the resistance
evolutions shown in figure 6 averaged over the three different
Monte Carlo runs (translated for clarity).
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Figure 8. Stripe structures with three different widths and
corresponding noise spectra averaged over three Monte Carlo runs.

The total noise power in the initial phase of linear
resistance increase is roughly proportional to the inverse cube
of the stripe width: the product PNW 3, where PN is the noise
power and W the stripe width, is equal, in arbitrary units, to
0.178, 0.226 and 0.28 for a width of 10, 30 and 90 nodes,
respectively.

To better investigate the effects of increasing damage
of the stripes on electromigration noise a time dependent
analysis of γ and of the noise power has been carried out. At
time t , the mean noise power and the γ exponent are extracted
from a portion of R(t) in the time interval (t, t + "t). In this
case the least squares fitting line of R(t) is computed for each
considered time interval and subtracted from R(t) before the
spectrum SRN is computed. Since we are interested also in the
behaviour up to the complete failure, the calculation has been
performed on a single simulation run (in particular the one
shown in figure 3 associated with the smallest failure time).
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Figure 9. Noise power (above) and γ (below) as a function of
time for the Monte Carlo run of figure 3 shown with the thick line.

As can be seen in figure 9, the exponent γ shows random
fluctuations around 2 during the linear increase phase of the
evolution of R(t), while it approaches the value of 2.3 near
the complete failure. On the other hand, the noise power
exhibits a small average increase with time even in the initial
phase, while in the final phase the increasing rate accelerates
and leads to a noise power roughly two orders of magnitude
larger than the initial one. Since the calculation has been
performed on a single simulation run, the behaviour of γ

and of PN is very irregular, but is qualitatively reproducible
among different Monte Carlo runs and similar to what has
been observed in experiments [11].

4. Discussion

A very simple model can be used to derive the 1/f 2

behaviour of the spectrum. Let us consider the function
y(t) = dR(t)/dt : it can be written as a series of delta
functions

y(t) =
∑

i

"Riδ(t − ti) (2)

where ti is the instant at which the ith event (failure of repair)
occurs, and "Ri is the corresponding change in the total
resistance. If the individual events are independent, y(t) is
the result of a Poissonian process with probability per unit
time λ [10], therefore the average of y(t) is 〈y〉 = λ〈"R〉
and its noise spectral density is

Sy(ω) = 2λ〈"R2〉. (3)

Since RN(t) is the time integral of the ac part of y(t), its noise
spectral density SRN(f ) is

SRN(ω) = Sy(ω)

ω2
= 2λ〈"R2〉

ω2
(4)

i.e. exhibits the 1/f 2 behaviour. From (4) it can be seen
that SRN is roughly proportional to W−3: λ is approximately
proportional to the total number of resistors, therefore to W ;
on the other hand "R is roughly proportional to W−2 in the
initial phase when very few failures have occurred.

If there is some weak positive correlation between
successive failures, the spectrum of y(t) should be somewhat
enhanced with respect to that of (3), the failure process
being super-Poissonian. However, Sy(ω) would still be
independent from frequency and therefore SRN would still
have an exponent γ equal to 2. The case of strong positive
correlation, which is likely to occur near the complete failure,
is different and needs deeper investigation.

5. Conclusion

We have shown that the simulation model proposed
allows us to recover most of the characteristic features of
the electromigration process measured experimentally, in
particular, the initial linear increase followed by the irregular
behaviour leading to the catastrophic failure, the dependence
upon grain size and the noise spectrum. Even if the detailed
physical mechanism for ion diffusion and void growth is
not considered, we are confident in the fact that at a higher
level the physics of the collective mechanism leading to the
catastrophic failure is correctly included. Other important
data, such as the mean failure time and its dependence on the
stripe parameters, can be obtained as a result of simulations
performed on statistically meaningful samples.
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