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We investigate the effect of finite temperature on the behavior of logic circuits based on the
principle of quantum cellular automata !QCA" and of ground state computation. In particular, we
focus on the error probability for a wire of QCA cells that propagates a logic state. A numerical
model and an analytical, more approximate model are presented for evaluation of the partition
function of such a system and, consequently, of the desired probabilities. We compare the results of
the two models, assess the limits of validity of the analytical approach, and show that error
probabilities depend on the ratio of the energy splitting between the ground state and first excited
state to the thermal energy kT . We then provide estimates of the maximum operating temperature
for a few relevant cases, and discuss possible approaches for increasing it. © 2000 American
Institute of Physics. #S0021-8979!00"01310-4$

I. INTRODUCTION

In recent years a new paradigm for computation was
proposed by Lent and co-workers,1 that is based on the con-
cept of quantum cellular automata !QCA". This concept, al-
though extremely difficult to implement from a technological
point of view,2 has several interesting features that make it
worth pursuing. The basic building block is made up of a
single cell containing two electrons that can be localized in
four different areas or ‘‘dots’’ located at the vertices of a
square, as shown in each of the cells represented in Fig. 1!a".
Coulomb repulsion forces the two electrons to occupy dots
that are aligned along one of the diagonals, and each of the
two possible alignments is associated with a logic state. By
placing cells next to each other, a wire can be formed !binary
wire", along which polarization enforced at one end will
propagate3 as a consequence of the system of charges relax-
ing down to the ground state. We can see this also as the
logic state of the first cell propagating down the chain until it
reaches the last cell. It has been shown that, by properly
assembling two-dimensional arrays of cells, it is possible to
implement any combinatorial logic function.3 The basic prin-
ciple of operation of such circuits is therefore the relaxation
of the system to the ground state, thus leading to the often
used expression ‘‘ground-state computation.’’

Even in the case of perfectly symmetric and identical
cells, the configuration of the QCA circuit may depart from
the ground state as a consequence of thermal excitations. If
the energy separation between the ground state and the first
few excited states is small, their occupancy will be nonneg-
ligible even at low temperatures, and the logic output may be
corrupted. A complete understanding of the behavior of
QCA arrays as a function of temperature is thus essential for
any practical application of the QCA concept. The problem
of errors due to finite temperature operation was first ad-
dressed by Lent et al.,4 on the basis of entropy consider-

ations. Our approach consists in a detailed study of thermal
statistics for QCA arrays, retrieving the results of Ref. 4 as a
special case, and allowing treatment of cells with more than
just two states. We have developed both a numerical model,
which enables us to study relatively short chains made up of
six-state cells in full detail, and an analytical model, which
can be used for arbitrarily long chains of two-state cells. In
both cases, we have considered a semiclassical approxima-
tion, and computed the probability of the system being in the
ground state and that of presenting the correct logic output,
i.e., of having the last cell of the chain in the expected logic
state. Since only one configuration corresponds to the ground
state, while several different configurations are characterized
by the correct logic output, the probability of having the
correct output is always larger than that of being exactly in
the ground state.

In Sec. II we present the cell model we have considered
for both approaches and the semi-classical approximation
that we have chosen to adopt. We also discuss the structure
of the energy spectrum for the excited states of a chain of
cells. In Sec. III we present the procedure that has been fol-
lowed for the calculation of the partition function with the
numerical method and the associated results for the prob-
abilities of correct operation as a function of temperature.
The analytical model is described in Sec. IV, together with
the associated results and a comparison with those from the
numerical model.

II. MODEL

Our approach is semi-classical insofar as electrons are
treated as classical particles, with the only additional prop-
erty being that they can tunnel between dots belonging to the
same cell. This is a reasonable approximation if the tunnel-
ing matrix elements between the dots of a cell are small
enough to strongly localize the electrons, which therefore
behave as well defined particles.

Our model chains are characterized by two geometrical
parameters: d is the distance between neighboring cell cen-
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ters, and a is the distance between two dots in a cell. We
represent the driver cell, i.e., the cell whose polarization state
is externally enforced, by bold lines and indicate only the
electron positions #see Fig. 1!a"$; driven cells are represented
by solid lines and each dot is indicated by a closed circle if
occupied or by an open circle if not. Within each cell we
consider a uniformly distributed (e/2 per dot, where e is the
electron charge" positive background charge, which makes
each cell neutral overall and prevents anomalous behaviors
in the nearby cells due to the uncompensated monopole com-
ponent of the electrostatic field. In particular, the repulsive
action of the uncompensated electrons in a driver cell can
‘‘push’’ the electrons in the nearby driven cell away, thus
leading to the formation of an unwanted state in which elec-
trons are aligned along the side further from the driver cell.

In our calculations we have considered the GaAs/
AlGaAs material system and assumed a uniform relative per-
mittivity of 12.9; this is a reasonable approximation, since
the permittivity of AlGaAs does not differ significantly from
that of the GaAs layer, where the electrons are confined. For
this study we have neglected, for the sake of simplicity and
generality, the effects of the semiconductor-air interface and
of the metal gates defining the dots, whose rigorous treat-
ment would have required considering a specific layout.5

For silicon-on-insulator QCA cells,6 materials with quite
different permittivities come into play: silicon, silicon oxide
and air, but reasonable estimates could be obtained by re-
peating our calculations with a relative permittivity corre-
sponding to that of silicon oxide, since most of the electric
field lines are confined in the oxide region where the silicon
dots are embedded. Moreover, estimates of the performance
obtained with this approximation would be conservative,
since part of the field lines is actually in the air over the
device, whose relative permittivity is unitary, thus leading to
a stronger electrostatic interaction and therefore to a reduced
importance of thermal fluctuations.

As we have already stated, the two minimum energy
configurations of a cell are those with the electrons aligned
along one of the diagonals, since these correspond to the
maximum separation between the electrons. However, other
configurations are also possible, and, depending on intercell
spacing, they can appear in the first few excited states of a
binary wire. We consider all of the six configurations that
can be assumed by two electrons in four dots, excluding only
those with both electrons in the same dot, which correspond
to too large an energy.

We define the two lowest energy configurations !those
with the electrons along the diagonals" state 1 and state 0 as
indicated in Fig. 1!b", while the corresponding polarization
values are 1 and !1, respectively. Polarization values are
defined7 as

P"
Q1#Q3!Q2!Q4

2 , !1"

where Qi is the charge in the ith dot, with the first dot being
at the top right and the others numbered counterclockwise.
Configurations with the two electrons along one of the four
sides of the cell have higher energies, as stated before, and
do not correspond to a well defined logic state. For this rea-
son, we define them as X states.

The energy is computed as the electrostatic energy of a
classical system of charges:8

E"%
i& j

qiq j
4'(0(rr i j

. !2"

Since in our model the total charge in each dot is either the
background charge !empty dot" or the algebraic sum of the
background charge and the charge of an electron, it can take
on only two values, #e/2 or !e/2, which implies that

qiq j" 1
4 e2 sgn!qiq j". !3"

If we write the interelectronic distance ri j in terms of the
ratio R"d/a and of the configuration, the energy of a binary
wire can be written as

E"
e2

4a
1

4'(0(r
%
i& j

s i j
!!ni jR#l i j"2#mij

2
, !4"

where ni j!)0, . . . ,Ncell!1* is the number of cells between
the cell containing dot i and the cell containing dot j, si j!
)!1,1* indicates the sign of qiq j , l i j!)!1,0,1* and mij
!)0,1* indicate the position of dots i and j inside the corre-
sponding cells. In particular, l i j is equal to 0 if both dots i
and j are on the left side or on the right side of the cell, it is
equal to !1 if dot i is on the right side and dot j is on the left
side and equal to 1 if dot i is on the left side and dot j is on
the right one. Furthermore, mij is equal to 0 if both dots i and
j are on the top or on the bottom of a cell, and it is equal to
1 if one dot is on the top and the other is on the bottom.

We have considered a binary wire made up of six cells
!one of which is a driver cell in a fixed polarization state"
with size a"40 nm and computed the energy values corre-
sponding to all possible 65 configurations. The values ob-
tained were ordered to study the energy spectra for different
parameter choices. Let us define R"d/a . If R$1, i.e., d
$a , the interaction between neighboring cells is substan-
tially due to just the dipole component, and a discrete spec-
trum is observed already for R"2.5 !see Fig. 2", with clear
steps: the ground state corresponds to configurations with all
cells in the same logic state: either all 1 or 0; the first excited
state, for R"2.5, includes configurations with one ‘‘kink,’’
i.e., with one cell flipped with respect to the rest of the chain.
Higher steps correspond to a larger number of kinks. Energy
values are expressed with reference to the ground state en-

FIG. 1. !a" Chain of six QCA cells showing the size a and the intercell
separation d; !b" representation of the six possible states of a cell with two
electrons.
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ergy and in kelvin, i.e., as the result of the division of the
actual energies in joule by the Boltzmann constant.

If R is decreased, the interaction between neighboring
cells is incremented and made more complex, so that X states
do appear, as shown in Fig. 2 for R"1.75. The various pla-
teaus start merging and a continuous spectrum is approached.
In particular, if we decrease R while keeping a constant,
thereby reducing the separation between neighboring cells,
the difference between the energy of the ground state and
that of the first excited state is expected to increase as 1/R ,
due to the increased electrostatic interaction. However, this is
true only down to a threshold value of R, below which the
splitting between the first excited state and the ground state
starts decreasing, as shown in Fig. 3, where the energy split
is plotted as a function of R for a cell size a of 40 nm and for
a wire with two !dotted line", three !dashed line" and six
!solid line" cells. This sudden change of behavior can be
understood on the basis of the previously discussed results:
below the threshold value for R, the configuration for the first
excited state contains a cell in the X state, thereby disrupting
operation of the wire and lowering the splitting between the
first excited state and the ground state.

In the inset of Fig. 3 we report the dependence of the
splitting between the two lowest energy states on the number
of cells. These results are for R"2.5, i.e., for a condition in
which no X state appears. Once the number of cells is larger
than a few units, the splitting quickly saturates to a constant
value. This is easily understood if we consider that the first

excited state is characterized by the cell at the end of the wire
being polarized opposite to the others: the strength of the
electrostatic interaction drops quickly along the chain, and
hence no significant change is determined by the addition of
cells beyond the first five or six. The energy splitting was
computed for a cell size a"40 nm and, as can be deduced
from Eq. !4", is inversely proportional to a. It can thus be
increased by scaling down the cell dimensions.

III. NUMERICAL RESULTS FOR THE THERMAL
BEHAVIOR

In order to compute the probabilities at a finite tempera-
ture for the various configurations, we introduce the partition
function of the wire:

Z"%
i
e!+Ei, !5"

where Ei is the energy of the ith configuration and +"kT , k
being the Boltzmann constant and T the temperature. The
summation is performed over all configurations with the first
cell in a given input logic state. The probability Pgs of the
entire system being in the ground state can be evaluated by
taking the ratio of the Boltzmann factor for the ground state
to the partition function:

Pgs"
e!+Egs

Z "
1

1#% i&gse!+,Ei
, !6"

where ,Ei"Ei!Egs , and the sum extends over all excited
states.

As already mentioned in Sec. I, Pgs is not the only quan-
tity of interest. From the point of view of applications, we
are mainly interested in knowing the probability Pclo of ob-
taining the correct logic output, which is higher than Pgs ,
because several configurations besides the ground state ex-
hibit the correct polarization for the output cell !the cell at
the end of the chain". We can compute Pclo by summing the
probabilities corresponding to all such configurations that we
label with the subscript j:

Pclo"
% je!+E j

Z . !7"

We have computed both Pgs and Pclo as a function of the
ratio of the splitting ,E between the ground state and first
excited state to kT . The results for a chain of six cells are
presented in Fig. 4: in the limit ,E/(kT)%1 all the configu-
rations !a total of 6N!1, N being the number of cells" be-
come equally probable and the probability Pgs reaches its
minimum value 1/6N!1. The probability of correct logic out-
put, instead, reaches a minimum value of 1/6 as a conse-
quence of the six possible states of the output cell being
equally probable.

It should be noted that an error probability of a few
percent may appear unacceptable for any practical circuit
application, but data readout must always be done via some
detector,5 which is characterized by a time constant neces-
sarily longer than the typical settling time of the QCA cir-
cuit. Therefore, each reading will be the result of an averag-

FIG. 2. Energy spectrum and cell configurations for a six-cell wire for two
values of the ratio R of intercell separation d to cell size a, with a"40 nm.

FIG. 3. Energy split between the first excited state and the ground state for
a chain of two !dotted line", three !dashed line" and six !solid line" cells as
a function of the ratio R of the intercell separation d to the cell size a,
assumed to be 40 nm. The energy split as a function of the number of cells
is shown in the inset for a value R"2.5.
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ing procedure, and will be compared to a threshold value. In
this case, an error probability of a few percent for the output
state will lead in most cases to a vanishingly small error
probability for the actual output of the readout circuit.

As already noted, the number of possible configurations
for a circuit with N cells !one of which is assumed to be the
driver cell and hence in a given, fixed configuration" is
6N!1. Thus the CPU time required to explore all such con-
figurations grows exponentially with the number of cells,
which limits the length of the binary wires that can be inves-
tigated with this approach in a reasonable time down to
about 10 cells. In order to assess the thermal behavior of
long wires, we have developed the approximate analytical
approach that will be described in Sec. IV.

IV. ANALYTICAL MODEL

The development of an analytical model for the investi-
gation of the thermal behavior of a QCA chain requires one
main simplifying assumption in order to make the algebraic
treatment possible: for each cell we consider only two con-
figurations, the ones corresponding to the logic states 1 and
0, and, thus, to polarization #1 and !1. From the discus-
sion in Sec. II it is apparent that the larger R, the better this
approximation is because the role of the X states is reduced.

Let us consider a generic one-dimensional chain consist-
ing of N cells and introduce the following one-dimensional
Ising Hamiltonian:

H"!J %
i"1

N!1

- i- i#1 , !8"

where for each cell labeled by the index i the variable - i
corresponds to the polarization and therefore assumes the
two values &1, and the positive quantity J !which has the
dimension of an energy" is related to the splitting ,E be-
tween the ground state and the first excited state energies of
an N-cell system by J",E/2. Let us point out that there is a
twofold degeneracy of the ground state, corresponding to the
two configurations )- i"1,'i* and )- i"!1,'i*. This de-
generacy is removed by enforcing the polarization state of
the driver cell, which corresponds to enforcing the configu-
ration of one of the boundary sites; our conventional choice
is -1"1. In this case, the lowest energy state corresponds to
the configuration )- i"1,'i*. The partition function of the

N-cell system described by the Hamiltonian Eq. !8" with the
boundary condition -1"1 is given, in analogy to Eq. !5", by
the following expression:

Z"%
)-*

e!+ H, !9"

where )-* stands for the summation over all possible states,
i.e. )-1"1,- i"&1,i"2, . . . ,N*. This last expression can
be written as

Z" %
-2 , . . . ,-N

V!1,-2" V!-2 ,-3". . .V!-N!1 ,-N", !10"

where V(- ,-!)"e+--!. In order to compute the right-hand
side of Eq. !10", the usual procedure is to introduce the trans-
fer matrix9

V"! e+J e!+J

e!+J e+J " , !11"

whose eigenvalues are

.#"e+J#e!+J,.!"e+J!e!+J. !12"

The expression for the matrix V N!1 is given by

V N!1"! .#
N!1#.!

N!1

2
.#
N!1!.!

N!1

2
.#
N!1!.!

N!1

2
.#
N!1#.!

N!1

2
" . !13"

It then follows that the partition function, Eq. !10", is

Z"#V N!1$11##V N!1$12"!e+J#e!+J"N!1, !14"

where the subscripts indicate specific elements of the V N!1

matrix. This explicit formula for the partition function allows
us to derive an analytical expression for the probability of
the system being in its ground state as a function of the
temperature and of the energy splitting between the two low-
est states. Since the ground state energy for the Hamiltonian,
Eq. !8", is Egs"!J(N!1), we obtain

Pgs"
e!+Egs

Z "
e+J(N!1)

Z "
1

!1#e!+,E"N!1 . !15"

Finally, we can also derive an analytical expression for
the probability of obtaining the correct logic output, in anal-
ogy to what we have already done in the numerical case. We
need to determine the occupation probability of a generic
state with -1"-N"1, which corresponds to having the cor-
rect output, because the polarization of the Nth cell !output
cell" is the same as that of the first cell. To do this, we
evaluate the following ‘‘reduced’’ partition function:

ZR" %
-2, . . . ,-N!1

V!1,-2" V!-2 ,-1". . .V!-N!1,1", !16"

where again V(- ,-!)"e+--!. Using the transfer matrix, Eq.
!11", it follows that ZR"#V N!1$11 , and hence

FIG. 4. Plot of the probability of correct logic output Pclo and of the prob-
ability of ground state occupancy Pgs for a chain of six cells with R"2.5 as
a function of the ratio ,E/(kT).
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Pclo"
ZR
Z "

#V N!1$11

#V N!1$11##V N!1$12

" 1
2 #1#! tanh!+,E/2""N!1$ . !17"

The above derived analytical expressions were used to
compute Pgs and Pclo as a function of temperature for a chain
of six cells, cell size a"40 nm, cell separation d"100 nm.
The results are shown by dashed lines in Fig. 5, together with
those obtained with the numerical technique !solid lines". For
temperatures below about 2 K !those for which reasonably
low error probabilities can be achieved" the analytical model
provides values that are in almost perfect agreement with
those from the more detailed numerical approach. The situ-
ation differs at higher temperatures, because higher energy
configurations containing cells in the X states start becoming
occupied and are properly handled by the numerical model,
whereas they are not included at all in the analytical ap-
proach. In particular, while for large values of the tempera-
ture the numerical Pclo tends towards 1/6, as previously dis-
cussed, the analytical Pclo approaches the value 1/2, because
the output cell can be in one of two states with the same
probability. Analogous considerations can be made for Pgs ,
which becomes extremely small (1/65) for higher tempera-
tures in the numerical case, while it drops to just 1/25 in the
analytical case since there are 25 possible configurations.

In Fig. 6, Pclo and Pgs are reported as a function of the

ratio ,E/(kT) !on a semilogarithmic scale" for the analytical
model !thick solid line" and for the numerical model with
R"2 !thin solid line" 2.5 !dashed line", and 4 !dotted line".
As expected, the agreement improves with increasing R be-
cause of the reduced relevance of the X states. For ,E/(kT)
of the order of a few units, the error probability becomes
very small and the analytical expression can be reliably used
to evaluate it.

The analytical expression allows us to provide estimates
of the maximum operating temperature for a QCA chain
formed by a given number of cells. We have computed the
maximum operating temperature that allows a given correct
logic output probability as a function of the number of cells:
results are reported in Fig. 7 for Pclo"0.6 !solid line", 0.9
!dashed line", 0.99 !dotted line" and cell size a"40 nm, in-
tercell separation d"100 nm. The maximum operating tem-
perature for a number of cells above a few tens drops loga-
rithmically, which leads to linear behavior in the logarithmic
representation in Fig. 7.

V. CONCLUSIONS

We have developed both a numerical and an analytical
approach to investigate the thermal dependence of QCA wire
operation. Both methods are based on a semi-classical ap-
proach in which electrons are considered as classical par-
ticles interacting via the Coulomb force, with, however, the
possibility of tunneling between the quantum dots belonging
to the same cell. The electrostatic energy associated with
each configuration was evaluated and used for calculation of
the occupancies via the partition function.

Numerical results were derived for wires with six-state
cells, which realistically reproduce the behavior of QCA sys-
tems, provided that the confinement in each quantum dot is
strong enough. The numerical procedure thus developed is
general and is currently being applied to investigation of
thermal limitations for simple logic gates, including the ef-
fect of spurious X states.

The analytical approach has allowed a detailed analysis
of the error probability due to thermal excitations in arbi-

FIG. 5. Plot of the probability of correct logic output Pclo and of the prob-
ability of ground state occupancy Pgs for a chain of six cells as a function of
temperature computed with the numerical six-state model !solid lines" and
with the analytical two-state model !dashed lines". The cell size a is 40 nm
and the intercell separation d is 100 nm.

FIG. 6. Plot of Pclo and Pgs as a function of ,E/(kT) for the analytical
two-state model !thick solid line" and for the numerical six-state model with
R"2 !thin solid line", 2.5 !dashed line" and 4 !dotted line".

FIG. 7. Maximum operating temperature of a QCA binary wire as a func-
tion of the number of cells to obtain the probability of the correct logic
output 0.6 !solid line", 0.9 !dashed line" and 0.99 !dotted line". The cell size
is 40 nm and the intercell separation is 100 nm.
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trarily long wires, generalizing the findings of previous stud-
ies, and the possibility of extending it to selected basic gates
is being investigated.

It is clear from our results that the operating temperature
depends on the ratio of the energy splitting ,E to kT . It
could therefore be raised by increasing ,E , which means
reducing the dielectric permittivity or scaling down cell di-
mensions. As already mentioned, the silicon-on-insulator
material system offers better prospects for higher-
temperature operation due to the lower permittivity of silicon
oxide. However, scaling down in any semiconductor imple-
mentation is limited by increasing precision requirements,2
therefore a trade-off between manufacturability and operat-
ing temperature has to be accepted. Implementations at the
molecular level could provide better opportunities of suc-
cessful operation, due to the reduced dimensions, but their
actual feasibility is still being assessed.
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