Universita di Pisa
I Y e

Unified approach for electron
transport in resonant tunneling
structures

Giuseppe Iannaccone

Dipartimento di Ingegneria dell'Informazione: Elettronica, Informatica, Telecomunicazioni,
Universita di Pisa

Bruno Pellegrini

Dipartimento di Ingegneria dell'Informazione: Elettronica, Informatica, Telecomunicazioni,
Universita di Pisa

G. lannaccone, B. Pellegrini, Unified approach for electron transport in resonant tunneling structures ,
Physical Review B, 52, pp.17406-17412 (1995).



PHYSICAL REVIEW B

VOLUME 52, NUMBER 24

15 DECEMBER 1995-11

Unified approach to electron transport in double-barrier structures

Giuseppe Iannaccone* and Bruno Pellegrini
Dipartimento di Ingegneria dell’Informazione: Elettronica, Informatica e Telecomunicazioni,
Universita degli studi di Pisa, Via Diotisalvi 2, I-56126 Pisa, Italy
(Received 30 May 1995; revised manuscript received 28 August 1995)

In this paper we show an approach to electron transport in double-barrier structures that unifies
the well-known sequential and resonant tunneling models in the widest range of transport regimes,
from completely coherent to completely incoherent. In doing so, we make a clear distinction be-
tween “approaches” and “transport regimes,” in order to clarify some ambiguities in the concept
of sequential tunneling. Scattering processes in the well are accounted for by means of an effective
mean free path, which plays the role of a relaxation length. Our approach is based on a recently
derived formula for the density of states in a quantum well, as a function of the round-trip time in
the well and of transmission and reflection probabilities for the whole structure and for each barrier.

I. INTRODUCTION

Tunneling in double-barrier structures has been exten-
sively studied since the pioneering work of Tsu, Esaki,
and Chang.!'? These structures promise many interest-
ing device applications® and allow us to study problems,
relating energy levels in quantum wells and tunneling,
which are of general interest in condensed matter physics.

A proper description of electron transport in double
barriers is required to understand the relevant phenom-
ena affecting the electrical properties of these structures
and to construct a suitable model for obtaining dc char-
acteristics, high-frequency performances, and noise prop-
erties in agreement with the experimental measurements.

There are two well-known models for transport
through a double barrier. The first has been basically
proposed by Chang, Esaki, and Tsu? and is the “resonant
tunneling” model, which is easy to understand by means
of the analogy with a Fabry-Pérot resonator: the tun-
neling probability for the whole structure is resonantly
enhanced for incident electron energies close to the dis-
crete levels in the quantum well. Subsequent evolution
of this model takes into account inelastic scattering in
the quantum well by means of an inelastic contribution
to the effective width of the energy range of well states,
which broadens the resonance and lowers the peak of the
tunneling probability as a function of energy.%>

The other well-known model is that of “sequential tun-
neling,” proposed by Luryi,® which consists in consider-
ing tunneling through the double barrier as a two-step
process: first, the transition from one electrode into the
well, then the transition from the well to the other elec-
trode. The two sequential transitions are assumed to
occur incoherently, so that scattering in the well region
is accounted for implicitly; moreover, the amount of in-
elastic scattering in the well influences the width of the
density of states in the well as a function of energy.

Zohta” has pointed out some ambiguity in the defi-
nition of sequential tunneling. In fact, in some papers
sequential tunneling is intended as a transport mecha-
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nism, i.e., what happens when the electron traverses one
barrier coherently, is scattered inelastically in the well,
and loses phase memory, then escapes through the other
barrier;® in other papers sequential tunneling is consid-
ered just as an alternative way to describe the resonant
tunneling phenomenon.”-®

In order to clarify these ambiguities, in this paper we
make a clear distinction between approaches and trans-
port regimes. Here we discuss two different approaches to
the study of transport in double-barrier structures: the
“resonant tunneling” one, and the “sequential tunneling”
one. On the other hand, we have a whole range of trans-
port regimes, depending on the rate of collision processes
in the well, i.e., on the value of the effective mean free
path l: one limit is the completely coherent transport
(I & o0), when no collisions occur in the well, and the
other limit is completely incoherent transport (! — 0),
when the high collision rate cancels out any size effect in
the well.

We wish to point out that, in this paper, the word
“sequential” is used to denote both a transport regime
and an approach, in order to follow the usual terminol-
ogy adopted in the literature.®™® This fact should not be
misleading to the reader: while the sequential “regime,”
discussed in Sec. IV B is a well-defined transport regime
in which almost all electrons lose phase coherence in
the well,®® the sequential tunneling “approach” is just
the method of considering the double-barrier structure
as consisting of three isolated regions weakly coupled
through the barriers (which have to be opaque so that
the Bardeen tunneling Hamiltonian'® can be used to ob-
tain transition matrix elements).

As such, the sequential approach does not require loss
of phase coherence in the well to be applicable; con-
versely, it can be used to describe also coherent transport.
Of course, the amount of scattering in the well is impor-
tant if we use the sequential tunneling approach: in fact,
it affects the density of states in the well”>!! which, in
turn, affects the number of transitions per unit time be-
tween the well and any of the electrodes through Fermi’s
“golden rule.”
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In Sec. IIl we show that the approaches mentioned
above, properly extended, are completely equivalent and
either can be used to describe all possible transport
regimes. This result has been obtained by Weil and Vin-
ter in the case of completely coherent transport,® and
by Zohta in the case of symmetric barriers and inelas-
tic scattering in the well.” We extend this equivalence
to the general case of arbitrary barriers, and arbitrary
amount of scattering in the quantum well, so that the
whole range of transport regimes is addressable. The
derivation of this equivalence, as we shall show, is based
on a recently derived formula for the density of states in
the well region of a double-barrier structure.'!

In Sec. IV we discuss three relevant transport regimes:
the “coherent,” “sequential,” and “completely incoher-
ent” regimes, for all of which, as said above, either ap-
proach can be used. However, for the coherent regime,
where the prevalent contribution to the total current
comes from electrons that conserve phase coherence and
energy, the resonant tunneling approach is more straight-
forward. Regarding the sequential regime, the sequential
tunneling approach is the best suited: in this regime prac-
tically all electrons lose phase memory and thermalize in
the well, but size effects strongly affect the density of
states in the well. Finally, also in the completely inco-
herent regime, where size effects are canceled out so that
the density of states in the well approaches that in the
bulk, the sequential tunneling approach is the most direct
one.

II. TRANSPORT MODEL

Transport properties of ultrasmall structures strongly
depend on both elastic scattering (due to impurities,
crystal defects, and interface roughness) and inelastic
scattering (due to phonons and electron-electron inter-
actions). Elastic collisions conserve energy and phase
coherence, while inelastic collisions do not.

However, if there is a sufficiently large number of impu-
rities and defects randomly distributed, also elastic scat-
tering has phase randomizing effects, due to averaging
over many paths corresponding to different actions.1?714
Therefore, we can account for dephasing effects of both
elastic and inelastic collisions by means of a single char-
acteristic length [, the effective mean free path, which is
a phenomenological parameter and, as we shall see, plays
the role of a relaxation length.

We assume that an electron traversing a length dzx
of the one-dimensional device structure has a probabil-
ity dz/l of experiencing a collision, and that electrons
emerge from collisions with a thermal quasiequilibrium
energy distribution and a completely random phase, so
that there is no quantum interference between these elec-
trons and the ones that have not lost phase coherence.

As can be seen, energy relaxation and phase random-
ization processes are supposed to occur at the same time,
and to be triggered by any kind of collision, regardless of
whether it is elastic or inelastic. This is not rigorously
true: in fact, electrons do not lose energy in elastic colli-
sions, and inelastic collisions are presumably not so effec-
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tive in relaxing energy as they are in randomizing phase.
Anyway we shall use, for simplicity, a unique length scale
for both processes. A more sophisticated model should
distinguish between different scattering sources and inco-
herence phenomena. For instance, two different energy-
dependent characteristic lengths for phase randomization
and energy relaxation could be adopted.

Our model is close to the one proposed by Bittiker;
however, Biittiker’s model is applicable when the differ-
ences between electrode chemical potentials are small
and/or when energy relaxation is not accounted for.
Moreover, in our model scattering phenomena can be
spread—in principle—over the whole region of interest,
and are not concentrated in a single inelastic scatterer
coupling the well to an extra reservoir.

The idea of using a phenomenological mean free path
to account for the loss of phase coherence in the well
is not new.”1%13,16718 Ag a5 improvement to previous
similar models, we have associated to the effective mean
free path also energy relaxing processes: in the following,
we shall show that this step is important to take into
account dissipation and to obtain the main result of this
paper, i.e., the demonstration of the equivalence of the
sequential and resonant tunneling approaches.

Other characteristic lengths usually considered in the
study of transport in ultrasmall structures are not rele-
vant to our discussion: all currents in the following sec-
tions are obtained after integration over all energies, so
that thermal averaging due to the spreading of the Fermi-
Dirac distribution at nonzero temperatures is already
taken into account, making unnecessary the evaluation
of the thermal diffusion length I7.2% Moreover, double-
barrier structures are more extended in the transverse
plane than in the longitudinal direction, therefore local-
ization effects are negligible (and the localization length
is not relevant).

As we shall show, using a single effective mean free
path for taking into account the effects of both the elas-
tic and inelastic mean free paths, transport regimes in
the considered structures depend only on the relations
between [, the well width w, and the barrier transmis-
sion probabilities Ty and T5.

8,15

A. Double-barrier structure

We refer to the system shown in Fig. 1. The po-
tential V() defines two barriers and the well region.
Given the electron longitudinal energy E, we can use
the transfer matrix technique!® and the multistep poten-
tial approximation?® to calculate the transmission and
reflection probabilities for the whole structure and for
each single barrier.

Scattering in the well can be easily accounted for by
using in the transfer matrices the complex wave vector
ki(z) = k(x) +1i/2l, where k(z) = {2m[E — V(z)]}*/?/A,
and m, A are the electron effective mass in the material of
the well and the reduced Planck’s constant, respectively.

Transport in the single barriers is assumed to be com-
pletely coherent; therefore, if T; and R; are the tunneling
and reflection probabilities for barrier ¢ (: = 1,2), we have
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FIG. 1. The one-dimensional potential energy profile V(z)
defines the first barrier (a,0), the well region (0,w), and the
second barrier (w,b). Efi, Efwo, Efr are the quasi-Fermi lev-
els in the left electrode, well, and right electrode, respectively.

T; + R; = 1. On the other hand, collisions in the well
make the continuity equation for the probability density
current of a given state no longer applicable, and we have
Téb + Rfib < 1, where quu, and Réb are the transmission
and reflection probabilities of the whole double-barrier
structure for an electron coming from the left electrode
(their expression is derived in Ref. 11). The same relation
applies to Ty, and Rj,, where the superscript r stays for
the right electrode.

In the absence of magnetic field, from time-reversal
symmetry we have Taq, = T4, = T3, while in general
Rl # R7,.?' By means of a general relation between the
density of states and dwell times in mesoscopic systems,22
in Ref. 11 we obtained that, on the assumption of a
smooth potential in the well region, the density of states
pw(E) in the effective well region (i.e., including states
in the well and tail states penetrating the well sides of
both barriers) can be written as

1 ,[1-R}
Pw(E)= " [ db

T
h rt

Tan
— 1
T + T2:|’ ( )

where both spin components have been considered and
73, is the round trip time in the well at the resonant en-
ergy. In the following sections we shall show the impor-
tance of this formula in unifying the resonant tunneling

and the sequential tunneling approaches.

III. APPROACHES TO TRANSPORT
IN DOUBLE-BARRIER STRUCTURES

A. Resonant tunneling approach

The introduction of the effective mean free path [ has
the effect that the current probability density for a given
state is not conserved. Electrons that experience a col-
lision seem to be “absorbed” in the well; in fact, they
actually emerge with a thermal quasiequilibrium distri-
bution, for which we need to introduce the density of
states in the well and a quasi-Fermi energy level.

Let dJ; be the contribution to the current through the
first barrier due to electrons with longitudinal energies
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between E and E + dE, referred to the conduction-band
bottom of the left electrode. We can write dJ; as the
sum of three terms, i.e.,

dJy = dJt +dJ¥ + dJ7, (2)

where dJ!, dJ}, and dJ] are the current contributions
due to electrons that have suffered their latest collision
(and have emerged with equilibrium energy distribution
from) in the left region, the well, and the right region,
respectively. Let kp be the transverse wave vector, and
pr (k) the density of transversal states. Moreover, let us
indicate with p,(E), fs(E,kt), vs(E) (s = l,w,r), the
one-dimensional density of states for longitudinal ener-
gies (including both spin contributions), the occupation
factor, and the attempt frequency (i.e., the average num-
ber of bounces on each barrier per second), respectively:
the subscripts I, w, and r refer to the left electrode, the
well, and the right electrode, respectively. We also in-
troduce the quasiequilibrium occupation factor in the
well fyo(E, k) corresponding to the quasi-Fermi energy
Efwo. We can define the integral of the occupation factor
over transversal wave vectors F,(E) (s =, w,r,w0), as

Fy(E) = / £+(B, kr)pr (k) dkr. 3)
Therefore we can write

dJ! = q(1 — Ry, pi FivdE, (4)

dJyY = —qT1py FuwovwdE, (5)

dJ7 = —qTavpr Frv-dE, (6)

where we avoid writing explicitly the dependence of all
the terms upon the longitudinal energy E. We also as-
sume that the contacts are “ideal,” in the sense that they
absorb without reflection all electrons leaving the device,
and inject electrons according to the thermal equilibrium
distribution. This modeling is implicitly assumed when
transport in quantum devices is described as a scattering
event,?? and, as long as we deal with stationary regimes,
is applicable without any restriction.

The longitudinal density of states in the left region can

be calculated with periodic boundary conditions as?*
L
= —— 7
pl(E) Wﬁ’l)[(E)’ ( )

where L; is the length of the left electrode and v;(E)
is the longitudinal velocity corresponding to E. The
attempt frequency (corresponding to periodic boundary
conditions) is simply »(E) = v;(E)/L;; so we have
pit(E)vi(E) = 1/wh. The same considerations apply to
the right region, therefore we have p,(E)v,.(E) = 1/nh.
The attempt frequency in the well is just the inverse of
the time required to complete a round trip of the well,
ie., vy (E) = 1/74(E).

We can write the expression for the current through
the second barrier in a similar way. The total current
through barrier 7 (¢ = 1,2) is J; = [dJ;. In stationary
conditions we must have



52 UNIFIED APPROACH TO ELECTRON TRANSPORT IN . ..

Ji = Js. (8)

By imposing this equality we can obtain the quasi-Fermi
level E¢,0 in the well.

B. Sequential tunneling approach

According to this approach, electron tunneling through
the double barrier is considered as a two-step process,
following Weil and Vinter’s formalism.”® If the tunnel-
ing probabilities of the two barriers are very small, i.e.,
Ty, T2 < 1,%° we can write d(J;)' and d(J2)’, the contri-
butions to the current through barriers 1 and 2 due to
electrons with energies in the interval (E,E + dE), as

d(Jy) = 1h(l|—’\4[1|2Pn0w(1:'t — F,)dE, (9)
and
d(J2) = 2 |Ma*pupr(Fu — Fr)dE, (10)

where M; (M) is the matrix element for the transition
from a state in the left (right) region to a state in the
well.'® We have (detailed derivation is shown in the Ap-
pendix)

M1 - ﬁzTIVﬂ/w, (11)
Mz = hszleVr. (12)

In the original model,® the two transitions are assumed
to occur incoherently, therefore energy relaxation and
phase randomization in the well are implicitly accounted
for. We can extend this model in order to include the
effects of ballistic electrons and of coherent transport by
simply considering the occupation factor f,, in the well as
a superposition of three partial occupancy probabilities,
a quasiequilibrium one, f,0, and the occupancy proba-
bilities f7 and f., for electrons coming from the left and
right electrodes, which have not been randomized, i.e.,

fw = fuwo+ fo + fi- (13)

If we substitute (13) in (3) and then in (9), we can write
the current contribution d(J;1)’ of electrons with longitu-
dinal energies between E and E + dE as (2), provided
that we choose

d(J1) = a3 1M pipu(Fi — F)dE, (14)
d(J}) = ~q5 M| pipuFuodE, (15)
d(J7) = —a3|Mi*pipuFLdE. (16)

In d(J})’, d(J?), and d(JT)’ we have taken into account
the contribution of electrons emerging with equilibrium
distribution from the left, well, and right region, respec-
tively.
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C. Equivalence between the above approaches

In order to verify the equivalence between the resonant
tunneling and sequential tunneling approaches we have
to make explicit the conditions that guarantee that the
values of dJf (s = l,w,r) of (4), (5), and (6) be equal
to d(J¢)' of (14), (15), and (16), respectively, and that
the same relations apply to the corresponding terms for
dJ, and d(J2)'. Straightforward calculations yield the
required conditions:

1 T
[ - l db
= = —F]
Ny prw 7Tﬁ1/w T2 ) (17)
1 Ta
" = wFT = T
o = puly = oo (18)
and
1 1- Rfib Tamn
Pw = Ay, [ T + T,
1 1- Ry, Tab
N — | —== 4+ —. 19
TV, [ T, + Tl] (19)

As long as (17)—(19) hold true, the two models can be
thought of as completely equivalent. It is straightforward
to see that conditions (17) and (18) are satisfied: in fact,
given pji; = 1/7h, we can rewrite (17) as

nt,vwTs = pFiviTap, (20)

which can be read as follows: p;F} is the number of elec-
trons in the left region, v; the bounces on the first bar-
rier per second, Typ, is the coherent tunneling probability,
therefore the right term is the number of electrons per
second coherently traversing the double barrier. The left
term has the same meaning, given that n!, is the num-
ber of electrons in the well that have come from the left
region and have not lost phase coherence.

The condition given by (19) is exactly equal to (1),
which has been obtained in Ref. 11, therefore the equiv-
alence of the two approaches has been demonstrated.

IV. TRANSPORT REGIMES
THROUGH THE DOUBLE BARRIER

Now, according to (2)—(7) and (19), we have

q
Jp = rs / [(1 — Rly,)Fy

T, T.
- (1 — Rhy, + leb) Fyo — TanF, |dE, (21)
q T2 Tay
= L 1—R" "
Jz 7rﬁ/ Tdel+( db+ T2 )F 0
- Rgb)F,} dE. (22)
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With these results, following the scheme by Biittiker,® we
can discuss three relevant transport regimes in double-
barrier structures, depending on the amount of inelastic
scattering in the well: the coherent transport regime, the
sequential regime, and the completely incoherent regime.

A. Coherent transport regime

In this regime the prevalent contribution to the total
current comes from “ballistic” electrons, which do not
lose phase coherence and energy in the well. This hap-
pens if the probability that a particle suffers from colli-
sions in the well is close to zero, i.e.,

Tap ~1— Ry ~1—RY,. (23)
This condition is satisfied if the effective mean free path
is long enough that almost any particle escapes from
the barrier before undergoing scattering events, in other
words w/l <« min{T;,T2}. Substitution of (23) in (21)
and (22) easily yields Fy,0 = 0, as it has to be, and

oo
Ji=Jy = —q-/ Ta, (F — F,) dE. (24)
wh Jo
Therefore, according to this result and to (4)—(6), the res-
onant tunneling approach suits very well this transport
regime, by simply taking dJ¥ = dJ¥ = 0, dJ! = dJ},
dJi =dJj.

B. Sequential transport regime

We call sequential regime the situation in which prac-
tically all electrons suffer from collisions before escaping
from the well, i.e.,

Tap < 1—RYy,, Tap <1— Ry, (25)
and, however, they complete at least a few round trips of
the well before escaping, so that the density of states p,, is
affected by the confinement. As can be seen from (5)—(7)
of Ref. 11, it means that 77,72 < w/l < 1, and implies
that both T4,T2/T1 and T4,T1/T> are much smaller than
either 1 — Ry, or 1 — R},. Taking into account (25) in
(21) and (22) we obtain

n=2 [0- R R~ Fuoab, (26)

q r
- /(1 — R")(Fuo — F,)dE.

Ja (27)
Moreover, the density of states in the well given by (19)
simply becomes p,, ~ (7hv,T1)"1(1 — RY,), and from
(17) and (18) we readily verify that ballistic electron con-
centrations n!, and n”, in the well are almost zero. As can
be seen from (26) and (27), the double-barrier traversal
becomes essentially a two-step process, and any effect of
quantum interference is implicitly included in Ry, and
Rfib. The sequential tunneling approach suits directly
this regime, by simply substituting F,, with Fyo in (9)
and (10).
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C. Completely incoherent transport regime

For higher rates of incoherent processes, i.e., w/l > 1,
we have that

1-RYy~Ty, 1-RYy=Te, Ta~TiTz, (28)
as can be seen from (6) of Ref. 12. Therefore (26) and
(27) become

Il

n=21 / Ty(F, — Fuo)dE, (29)

J2

]

q
L / Ty(Fuo — F)dE. (30)

Correlation between currents through barriers 1 and 2
is only due to the current conservation in the well, i.e.,
to the position of the quasi-Fermi level in the well. The
density of states in the well, as can be seen from (19),
becomes p,, ~ (whiv,) 7!, i.e., any size effect disappears,
and p,, is equal to the density of states in the bulk of the
material given by (7). The sequential tunneling approach
suits easily this regime, by simply putting F,, = F,,0 and
PwVw = (mE)~1 in (9) and (10).

V. SUMMARY

In this paper we have shown that the sequential tun-
neling and resonant tunneling approaches, properly ex-
tended, are completely equivalent for any rate of collision
processes in the well, and can be used to describe the
whole range of transport regimes in double-barrier struc-
tures. Let us point out again the extensions required.

In the resonant tunneling approach we account for in-
coherent transport by introducing a current due to elec-
trons scattered in the well and emerging with equilibrium
distribution (namely, dJ;’ and dJ}’). Determining this
current requires knowledge of the density of states and
of the occupancy probability of the states in the well.

In the sequential tunneling description we account for
electrons that have not been scattered in the well by
means of the “ballistic” distributions n!, and n7,. Also in
this description the density of states and the equilibrium
distribution function are fundamental parameters.

The difference between these approaches is in the point
of view that is given preference: the former assumes that
electrons (except the ones that are inelastically scattered)
traverse the structure coherently, and the latter assumes
that electrons (except ballistic ones) thermalize in the
well and obey an equilibrium energy distribution. There-
fore, it is apparent that the resonant tunneling approach
is better suited for describing coherent transport, and the
sequential tunneling approach fits more directly incoher-
ent transport, when practically every electron undergoes
inelastic scattering in the well.

The equivalence of these two models, for the whole
range of transport regimes, has been shown on the ba-
sis of a recently derived formula for the density of states
in a quantum well as a function of the round-trip time
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and of transmission and reflection probabilities for the
whole structure and for each barrier. Energy relaxation
and phase-breaking phenomena are accounted for, in our
simple model, by means of a single parameter, the effec-
tive mean free path I, which plays the role of a relaxation
length.

We wish to point out that while in the paper by Zohta’
this equivalence was verified only for symmetric barri-
ers, not accounting for energy relaxation in the well, and
as long as the Breit-Wigner formalism was applicable,
here the equivalence between resonant tunneling and se-
quential tunneling approaches is demonstrated for any
double-barrier structure and for any degree of inelastic
scattering, considered as a randomizing agent for both
phase and energy.
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APPENDIX: MATRIX ELEMENT
FOR THE TRANSITION
THROUGH A POTENTIAL BARRIER

Let us consider the one-dimensional potential barrier
sketched in Fig. 2, separating regions 1 and 2. The
potential energy around the turning points a and b has
been modified in order to have two flat steps, so that the
wave functions on both sides of the potential barrier can
be written as a superposition of plane waves. In fact we
use a perturbed V’(z) defined as

V(a—e), a—e<zr<a+te
Vi(z)={ V(b+e), b—e<z<b+e (A1)
V(x) otherwise

However, the step width 2e¢ can be arbitrarily small,
therefore we do not lose generality.

Around a and b, the wave function v; of an electron
of energy E coming from region 1 is

a—e<z<a-+e,

,‘l,l _ Al[eikl(z—a) + rle—ikl(c—a)],
b—e<z<b+e,

Ajtleika(e=b)
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V(x)

region 1 region 2

V)

a+e ' a-€¢ b-gib+e x
a b

FIG. 2. The one-dimensional potential energy V(z) (fine
line) separates regions 1 and 2. The potential energy profile
V'(z) (thick line) is equal to V(z) except near the turning
points a and b, where is has been modified in order to have flat
steps, so that the wave functions on both sides of the poten-
tial barrier can be written as a superposition of plane waves:
Vi(z)=V(a—¢€)fora—e<z<a+e and V'(z) =V(b+e)
forb—e<z<b+e

V'(b)]}*/?/h, and 7!, ' are the reflection and transmis-
sion coefficients of the barrier for an electron coming from
the left. If v, is the wave function of an electron at the
same energy in region 2 we can write

_ Aztre—-ikl (z—a)’
Yo = Aj[eika(a=b) 4 prgika(a=b)]

a—e<z<a-+e,
b—e<z<b+e,

(A3)

where " and t" are the reflection and transmission co-
efficients for an electron coming from the right. From
Bardeen!® we can calculate the matrix element from the
transition between regions 1 and 2 at energy E, as

Il

h’4 * *|2
s |3 Vaba — 92 V]| e

= hzTJlincJZinca

|M|?
(A4)

where T = |t"|?ky/k; is the transmission probability of
the barrier; Jiinc (J2inc) is the probability current inci-
dent on the barrier associated to the state ¥; (v2); for
instance, from (A2) we find that Jy,. = |A;|2hk;/m;
however, Jyinc is simply obtained as the integral of the
probability density in region 1 times the attempt fre-
quency on the barrier; i.e., if ¥; is normalized to unity,
J1ine = v1. If we apply the same result to Jaj,c we can
eventually write

|M|? = B*Tvyvs. (A5)

(A2)
where k; = {2m[E — V'(a)|}/?/h, k2 = {2m[E —
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