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Three-dimensional simulation of nanocrystal Flash memories
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We have developed a code for the detailed simulation of nanocrystal Flash memories, which consist
of metal–oxide–semiconductor field-effect transistors !MOSFETs" with an array of semiconductor
nanocrystals embedded in the gate dielectric. Information is encoded in the MOSFET threshold
voltage, which depends on the amount of charge stored in the nanocrystal layer. Nanocrystals are
charged through direct tunneling of electrons from the channel. Such memories are promising in
terms of shorter write–erase times, larger cyclability, and lower power consumption with respect to
conventional nonvolatile memories. We show results obtained from the self-consistent solution of
the Poisson–Schrödinger equation on a three-dimensional grid, focusing on the charging process
and on the effect of charge stored in the nanocrystals on the threshold voltage. © 2001 American
Institute of Physics. #DOI: 10.1063/1.1361097$

A nanocrystal Flash memory is basically a metal–
oxide–semiconductor field-effect transistor !MOSFET" in
which the gate dielectric is replaced by a gate stack consist-
ing of a thin tunneling oxide, a layer of semiconductor
nanocrystals embedded in silicon oxide, and a thicker oxide.
Such memory devices have been recently proposed1,2
and extensively studied in industrial and academic
laboratories.3–7

The memory is programmed by applying to the gate a
positive voltage of a few volts that lowers the thin oxide
conduction band and enhances tunneling of electrons from
the substrate to the nanocrystals. Electrons get trapped in the
nanocrystals, since further tunneling to the gate is inhibited
by the thicker top oxide. However, due to already observed
Coulomb blockade effects at room temperature,3 only a well
defined number of electrons !depending on the applied gate
voltage" can occupy each nanocrystal, so that charging of the
nanocrystals is a self-limited process.

When an electron is added to each nanocrystal the
MOSFET threshold voltage increases in steps, so that both
single and multibit storage is possible. The information
stored in the memory is then simply read by measuring the
saturation current corresponding to a gate voltage signifi-
cantly smaller than that used for programming. The memory
is erased by applying a negative gate voltage that ejects elec-
trons from the nanocrystals into the channel.

While a conventional Flash electrically erasable pro-
grammable read-only memory !EEPROM" has a tunneling
oxide typically thicker than 7 nm and requires programming
voltages larger than 10 V, a nanocrystal memory has a very
thin tunneling oxide !2–4 nm", and exhibits short program-
ming times with direct tunneling and much smaller write–
erase voltages !%3 V". It is therefore extremely promising in
terms of endurance to write–erase cycles and power
consumption,4 while it usually has a poor retention time
compared to the 10-year requirement typical of commercial
Flash EEPROMs.

Nanocrystal memories have interesting applications as
quasi-nonvolatile memories, where cyclability and power
consumption are more important than 10-year data retention,
or as dynamic random access memories with very long re-
fresh time. In addition, Coulomb blockade effects should en-
able easy implementation of multibit storage schemes.

Several materials have been investigated for the nanoc-
rystals and the dielectric layer, and are listed in Table I. At
present, silicon rich oxide deposited by low pressure chemi-
cal vapor deposition !LPCVD" on SiO2 !Ref. 4" and im-
planted Si or Ge in SiO2 !Ref. 5" are the most promising
from the point of view of compatibility with current comple-
mentary MOS !CMOS" technology, retention time, and
threshold voltage shift per electron.

Since the device structure is inherently three-
dimensional !3D" and electrons in the dot are strongly con-
fined !the nanocrystal diameter is usually in the range of
3–10 nm", an equivalent electrical circuit would not be ad-
equate for obtaining accurate results. For this reason, we
have developed a code for the self-consistent solution of
Poisson and Schrödinger equations on a 3D grid, based on
density functional theory with local density approximation.8

While nanocrystals are of course randomly distributed in
the layer, we have considered a simplified situation in which
disorder is removed, that is, nanocrystals occupy a perfect
two-dimensional lattice in the dielectric layer. We consider
the device structure shown in Fig. 1: a MOSFET with a gate
stack consisting of a 3 nm thick bottom tunneling oxide, a

a"Electronic mail: g.iannaccone@iet.unipi.it

TABLE I. A few prototypes of nanocrystal memories presented in the lit-
erature, with measured &VT per electron and retention time.

Dot/insulator
material

&VT per electron
!V" Retention time Reference

Si in SiO2 0.36 Not shown 1
InAs/AlGaAs 0.25 1 h at 100 K 6
Si or Ge in SiO2 0.3 %1 h 5
SiGe/SiO2 0.4 1 day 7
SRO/SiO2 %1 Not shown 4
Si/Si3N4–SiO2 0.48 %3 h 3
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rectangular two-dimensional array of silicon nanocrystals
embedded in SiO2, and a 6 nm thick top oxide layer. Without
loss of generality, we assume cubic dots with 5 nm edges
and average donor doping of 1019 cm!3 !here we will not
consider the effect of discrete dopants". The substrate has an
acceptor doping of 1018 cm!3 and the gate is metallic.

The regular arrangement of the dots allows us to simu-
late only the region that represents the elementary cell of the
lattice structure, and then to apply periodic boundary condi-
tions on the potential. The domain in which we actually
solve the Schrödinger–Poisson equation is therefore the one
shown in Fig. 2. The surface density of nanocrystals 'nc is
the inverse of the area of the domain considered on the hori-
zontal plane: we consider an area of 10"10 nm2, corre-
sponding to 'nc#1012 cm!2.

Let us point out that we are making two implicit assump-
tions: that all nanocrystals are in the same charge conditions
and that edge effects acting on nanocrystals located close to
the contacts are not relevant. While the latter can be readily
accepted if we assume a sufficiently large number of nanoc-
rystals under the gate !e.g., at least 5"5", the former is only
justified because here we focus on stationary properties of
the memories: it would not be acceptable if we were inter-
ested in the time-dependent process of nanocrystal charging.
The potential profile in our domain is determined by the
Poisson equation

(#)(*!r"$#!+!r"#!q#p!r"!n!r"

$ND
$!r"!NA

!!r"$ , !1"

where * is the scalar potential, ) the dielectric constant, p
and n the hole and electron densities, respectively, and ND

$

and NA
! the concentrations of ionized donors and acceptors,

respectively, that depend on * as indicated in Ref. 9. While
electrons and hole concentrations in the substrate are com-
puted with the semiclassical approximation,9 electrons in the
nanocrystal are strongly confined, and therefore their density
is computed by solving the Schrödinger equation with den-
sity functional theory

!
,2

2 (! 1m (- "$Ec!r"-$Vxc!r"-#E- , !2"

where Ec is the conduction band in the nanocrystal #Ec
#Ec(*#0)!q*$ , , is the reduced Planck constant, and
Vxc is the exchange-correlation potential in the local density
approximation8

Vxc!r"#!
q2

4.2)0)r
#3.3n!r"$1/3. !3"

Nanocrystals are randomly oriented, therefore we prefer not
to use the effective mass tensor for silicon, but only a single
effective mass for the density of states m#0.32m0 , where
m0 is the electron mass at rest. Each eigenfunction - i of
energy Ei has a degeneracy of 12, due to spin degeneracy
and to the presence of six equivalent minima in the conduc-
tion band. If the dot is occupied by N electrons, and l and m
are two integer such as N#12"l$m !with m%12" the elec-
tron density reads

n!r"#12/
i#1

l

#- i!r"#2$m#- l$1!r"#2 !4"

under the assumption that the electron density in the dot is
not appreciably different from that in the ground state.

The Poisson–Schrödinger equation is self-consistently
solved for several values of N and of the gate voltage VG .
The maximum number of electrons that can occupy a dot
Nmax is a function of VG : if 0(N ,VG) is the chemical po-
tential of the dot with N electrons and applied gate voltage
VG , and EF is the Fermi energy in the substrate, Nmax must
satisfy the conditions

0!Nmax ,VG"%EF ; 0!Nmax$1,VG"&EF . !5"

The chemical potential is computed with Slater’s transition
rule10 as 0(N)#EN!1/2 , where EN!1/2 is the highest occu-
pied eigenvalue of the system with N!1/2 electrons, com-
puted with density functional theory.

FIG. 3. Electron density on the x– z plane for an applied gate voltage of 1.2
V and one electron in the dot.

FIG. 1. Device structure considered in the simulation. A regular two-
dimensional array of cubic Si nanocrystals is embedded in the gate oxide of
a MOSFET.

FIG. 2. View of the simulation domain: The nanocrystal is a silicon cube
with 5 nm edges, and the thickness of the top and bottom oxide is 6 and 3
nm, respectively.
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By keeping fixed the number of electrons and computing
the electron density in the channel as a function of VG , one
can directly obtain the value of the threshold voltage for any
number of electrons in the nanocrystal.

The electron density in the nanocrystal on the x– z plane
for an applied voltage of 1.2 V and an occupancy of one
electron is plotted in Fig. 3. As can be seen, the electron
density has the shape of the first eigenfunction, with only one
peak at the center.

In Fig. 4 we plot the sheet electron density in the channel
as a function of the gate voltage VG for a number of addi-
tional electrons in the nanocrystal ranging from 0 to 5 !thin
solid lines". From those curves the threshold voltage can be
obtained as the intercept on the horizontal axis of the line
approximating each curve in the quasilinear region. As can
be seen, the threshold voltage with no electrons in the nano-
crystal is VT0#0.5 V and the VT shift is approximately 0.4 V
per each stored electron.

In Fig. 5 we plot the chemical potential 0 of the dot as a
function of VG for a number of electrons N ranging from 1 to
7. The Fermi level in the channel is zero, therefore the inter-
cept of all the curves with the horizontal axis gives the gate
voltage at which an additional electron can enter the nano-
crystal.

We can see from Figs. 4 and 5 that several options for
write and read voltages are available. For example, if we
assume that the logical ‘‘0’’ corresponds to zero electrons in
the nanocrystal, we could write a logical ‘‘1’’ by applying a

voltage pulse of 2 V, thereby introducing three electrons in
the nanocrystal !as can be seen from Fig. 5" and obtaining a
threshold voltage VT1#1.7 V !as obtained from Fig. 4". Then
we could choose a voltage VGR#0.6 V to read the status of
the memory, since it satisfies VTO%VGR%VT1 and, in addi-
tion, is small enough not to introduce any additional electron
in the dot !see Fig. 5".

We have developed a numerical model for the three-
dimensional quantum-mechanical simulation of nanocrystal
Flash memories, and we have shown results for a typical
device structure. The model developed is a useful tool for
exploring the effects of process parameters and of geometry
on the electrical properties of such memory devices.

For simplicity, we have considered a perfectly regular
array of nanocrystals. A disordered distribution of nanocrys-
tals would have an effect very similar to that of the random
distribution of dopants in conventional MOSFETs, causing
statistical dispersion of VT and of VT shifts. From this anal-
ogy, we can say that the relative dispersion of VT shifts in-
creases when the channel area is reduced, but decreases with
increasing nanocrystal density 'nc , and can be therefore kept
under control by increasing 'nc .11 However, a detailed in-
vestigation on this subject is required.

A very important aspect for the industrial application of
nonvolatile memories based on nanocrystal layers is the
evaluation of write, erase, and retention times. Promising
results have been obtained in experiments3–7 and the issue
has been partially addressed from the theoretical point of
view in Ref. 12. An in-depth analysis of this aspect is also
needed to evaluate the maximum operating temperature as a
function of the required retention time. This issue is beyond
the scope of this letter and will be addressed in the near
future.
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FIG. 4. Sheet electron density in the channel as a function of the gate
voltage for a number of electrons in a nanocrystal ranging from 0 to 5.

FIG. 5. Chemical potential of the nanocrystal as a function of the gate
voltage for a number of stored electrons ranging from 1 to 7.
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