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SUMMARY

We present a simulator for quantum cellular automaton (QCA) circuits, based on a semiclassical model
and aimed at the determination of the error probability in the presence of thermal excitations. Di!erent
methods are discussed; either a complete exploration of the con"guration space, or a partial exploration
by means of simulated annealing. Results for the probability of obtaining the ground state and the
correct logical output are derived and compared for a chain of cells, for a majority voting gate and
for a simple combinatorial network. This approach can be extended to generic implementations of the
QCA paradigm. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The analysis and simulation of circuits based on nanoelectronic devices poses new challenges
and is gaining relevance as nanoscale devices are being put together from the beginning
to obtain more complex functionalities. Compared to the simulation of single devices, circuit
simulation involves a much larger computational e!ort, and requires a trade-o! between model
re"nement and the amount of acceptable computational complexity. It is, therefore, necessary
to develop e#cient approximations, which reproduce the behaviour of single devices in a
reasonably accurate way, but allow treatment of many of them at the same time.
We have developed a few simulators for quantum cellular automaton (QCA) circuits im-

plementing the computational paradigm proposed by Lent et al. [1] for the realization of
combinatorial logic circuits based on bistable cells containing two electrons that can be local-
ized according to two possible con"gurations, corresponding to the two logic states. Our main
purpose at this stage has been represented by the rigorous evaluation of error probabilities due
to thermal excitations and by the determination of the maximum allowed operating tempera-
ture. For this reason, whenever possible, we have used models that, although simpli"ed, have
a capability of representing not only the two lowest energy states of a QCA cell (the ones
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corresponding to the logical values 1 and 0), but also the excited states that can be populated
when temperature is raised.
In this paper, we present an approach to the simulation of QCA circuits based on a semi-

classical model, in which electrons are considered as classical particles that can arrange in
the four dots in such a way as to minimize the total electrostatic energy, with the only added
nonclassical property of being able to tunnel between adjacent dots. The model is developed
with a numerical simulation that includes all six possible con"gurations of two electrons in
each cell and with an analytical extension for a reduced number of con"gurations. For large
circuits an exhaustive search for the ground state becomes prohibitive, and specialized search
techniques have been developed, based on a simulated annealing procedure.
In the next section, we present a general description of the semiclassical model, with a

discussion of the energy spectrum of a wire of QCA cells. Section 3 deals with the application
of the semiclassical model to the evaluation of the error probability in a wire, while Section 4
deals with the evaluation of this quantity for more complex circuits. The simulated annealing
procedure for the determination of the ground state of large QCA logic circuits is presented
in Section 4. Finally, Section 5 summarizes with conclusions.

2. SEMICLASSICAL MODEL

As already stated in the introduction, our semiclassical model for QCA cells is based on treat-
ing the electrons as classical particles, which can however tunnel between adjacent quantum
dots. A cell has the structure represented in Figure 1(a), with four dots separated by tunnelling
barriers. Owing to electrostatic repulsion, electrons will tend to align along one of the two di-
agonals, since these are the con"gurations that correspond to the maximum spatial separation.
In the absence of external electric "elds, these two con"gurations will have exactly the same
energy, while in the presence, for example, of a nearby cell with a well-de"ned polarization,
one of them will be energetically favoured. There are also four more possible con"gurations
(we do not consider the situations in which more than one electron are con"ned in a single
dot, due to the very large associated electrostatic energy), for a total of six con"gurations, as
indicated in Figure 1(b). While we associate the logic values 1 and 0 with the two lowest
energy states (1 with the state with electrons in dots 1 and 3, 0 with the one with electrons
in dot 2 and 4), no logic value is to be assigned to the other four states corresponding to
electrons aligned along directions parallel to the sides of the cell, therefore, we de"ne them
X states. If several cells are lined up to form a wire (we will de"ne it ‘binary wire’ in the
following) and a given polarization is enforced for the "rst cell, polarization will propagate
along the wire in a domino fashion [2], until all cells have reached the same con"guration.
In our simulations a positive background charge e=2 (e being the electron charge) is assumed

in each dot, in order to keep the cell overall neutral, thus, avoiding undesired e!ects associated
with the monopole electric "eld component that would be produced by a non-neutral cell,
which would tend to push both electrons contained in the nearby cells towards the further
side. The total electrostatic energy of an array of QCA cells can, within our semiclassical
model, be expressed as the energy of a system of point charges:

E=
∑

i !=j

qiqj
4!"0"rrij

; (1)

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2001; 29:37–47
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Figure 1. (a) Layout of a four-dot QCA cell with two electrons. (b) Possible con"gurations
for two electrons in a four-dot cell.

Figure 2. Energy spectra for di!erent values of the ratio R of the intercell separation d to the distance
between dots in the same cell a. The plots for R=3:5 and R=50 have been translated to the right for

the sake of graphic clarity.

where qi is the charge associated with the ith dot, rij is the distance between dot i and dot j,
"0 is the vacuum permittivity, and "r is the relative permittivity of the medium (we consider
the case of GaAs=AlGaAs, assuming a uniform relative permittivity of 11:9).
By repeating the evaluation of the total energy for all possible con"gurations (6N if the

circuit contains N cells) we can determine the ground state and the distribution of energy
values. The energy spectrum of a binary wire is strongly in%uenced by the ratio R of the
separation between cell centers d to the distance a between the nearest dots in the same cell.
If this ratio is large, a ‘kink’ in the wire (i.e. a single discontinuity in the polarization of the
cells) corresponds to an increase in the electrostatic energy that is almost independent of the
position of the kink itself. Therefore, all con"gurations with one kink have the same energy,
corresponding to the "rst excited state of the chain. As two kinks appear, the total electrostatic
energy is further raised, yielding a second ‘level’ in the energy spectrum. The same situation
is repeated with increasing number of kinks, leading to a discrete staircase spectrum, as seen
in Figure 2 for R=50. If R is reduced, repulsion e!ects between the electrons cause the
appearance of X states which correspond to intermediate energy values, thereby, leading to a
more complex spectrum (central plot in Figure 2), that, for R=2, becomes continuous.
As the number of cells increases, the time required to perform an exhaustive exploration

of the energy values for all con"gurations grows exponentially, becoming prohibitive if more
than about 12–13 cells are considered. If larger circuits are to be investigated, one can either
resort to a simpli"ed model (with fewer states) or apply techniques based on an incomplete,
targeted exploration of the con"guration space, such as in the case of the simulated annealing
method, which will be discussed in Section 5.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2001; 29:37–47
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Figure 3. Plot of the probability of a six-cell binary wire being in the ground state (Pgs) and of presenting
the correct logical output (Pclo). The intercell separation is 100 nm and the distance between dots

in the same cell is 40 nm.

3. THERMAL BEHAVIOUR OF A BINARY WIRE

As already mentioned in the introduction, our main focus has been on the investigation of
"nite temperature e!ects on the operation of QCA logic circuits. While at zero temperature a
QCA array will always relax, given a su#cient time, down to the ground state, providing the
expected output values, di!erent con"gurations may appear with a nonvanishing probability
in the presence of thermal excitations associated with a "nite temperature. The higher the
temperature, the more likely the occurrence of con"gurations other than the ground state will
be. It is important to remind of the fact that in any conceivable implementation of QCA logic
data readout will be performed by means of a detector, which, due to its characteristic time
constant, will provide an average value of the output cell polarization state. Therefore, the
actual error probability on the data available at the output of the readout circuit will be much
smaller, owing to the averaging e!ect, than that on the actual instantaneous polarization state
of the output cell.
In order to evaluate the mentioned error probabilities we need to know the probability for

the system being in the ground state and in any given excited state. Such probability for the
jth state can be expressed by means of the Boltzmann factor divided by the partition function.
In particular, the probability of the system being in the ground state is given by

Pgs =
e−Egs=(kT )

Z
=

1
1 +

∑

i !=gs e−&Ei(=kT )
; (2)

where Z is the partition function, given by Z =
∑

i exp−Ei=(kT ); &Ei=Ei − Egs, k is the
Boltzmann constant and T is the temperature. The summation is performed over all excited
states. Besides Pgs, we may also be interested in knowing the probability of having the correct
logical output Pclo, which is larger than Pgs, since there are other con"gurations, in addition
to that corresponding to the ground state, which share the correct output value. In order to
obtain Pclo we need to sum over the probabilities corresponding to such con"gurations:

Pclo =
∑

j e
−Ej=(kT )

Z
: (3)

We have evaluated these two relevant quantities for structures of increasing complexity, as
a function of temperature, assuming a separation a between the dots within a cell of 40 nm
and an intercell distance d of 100 nm. The "rst object of investigation has been represented

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2001; 29:37–47



SEMICLASSICAL SIMULATION OF QCA CIRCUITS 41

by the already mentioned binary wire: results for Pgs and Pclo are reported in Figure 3, for
the case of a six-cell wire. Both probabilities decrease with increasing temperature, but, while
Pgs drops down to an extremely small value, Pclo saturates at about 0.167. The reason for this
behaviour is rather simple: for large values of the temperature, when kT becomes much larger
than the separation in energy between the di!erent con"gurations, all such con"gurations
become approximately equally probable. Thus, the possible con"gurations for the wire are
65 (the polarization of the input cell is enforced from the outside, therefore, only 5 cells
participate in creating the con"guration spectrum) and only one corresponds to the ground
state, limT→∞ Pgs = 1=65. The possible polarization states for the output cell are instead 6, thus
leading to a Pclo of 1=6 for large values of T . Given a maximum acceptable error probability,
the limiting operating temperature can be obtained from the plot of Figure 3. As the length
of the wire is increased, the maximum operating temperature decreases logarithmically, as
discussed in Reference [3] on the basis of entropy arguments and in Reference [4] by means
of an analytical version of the procedure we have just discussed.

4. THERMAL BEHAVIOUR OF LOGIC CIRCUITS

The analysis performed on a binary wire can be extended to an arbitrary logic gate, as long
as treatment of the full con"guration space is possible. One of the simplest gates that can be
obtained with the QCA approach is the majority voting gate, whose layout is represented in
the inset of Figure 4: the logic state of the output cell corresponds to that of the majority
of the inputs. Such a gate can also operate as a programmable OR or AND [2], by using
one of the inputs to control the logic function: if the control input is set at 1, the output
corresponds to an OR operation between the two inputs. If, instead, the control input is set
at 0, the output corresponds to the AND of the inputs. The behaviour of Pgs and Pclo as a
function of temperature is rather similar to that for the binary wire shown in Figure 3 and
exhibits some variations in dependence of the input con"guration. Such a dependence is clearly
recognizable in the plot of Figure 4, which represents the maximum operating temperature as
a function of R=d=a, with a=40nm, for the control input set at 1 (OR gate) and all possible
combinations of the A and B input values. The minimum acceptable Pclo has been set at 0.9
(which corresponds to a much higher actual correct readout probability, as already discussed).
The operating temperature decreases with increasing R, due to the reduced interaction; an
anomalous behavior is however observed for values of R less than 2. In this latter case the
dependence of the maximum operating temperature on R is reversed, as a consequence of the
appearance of X states in the "rst excited con"guration, which completely alters the energy
splitting between the ground state and the "rst excited state, whose ratio to the thermal energy
kT is the "gure of merit determining the error probability [4]. Notice, in particular, that the
curve for A=0, B=0 drops to zero for R below approximately 1:6, because in this range
neither the ground state nor the "rst excited state correspond to the expected output value 0
and, therefore, there is no temperature at which the output has the correct logical value.
We have extended our investigation of the error probability also to more complex structures,

such as the one shown in Figure 5, which contains two AND gates providing the inputs to an
OR gate, thus implementing the logic function AB+CD. This circuit is made up of 18 cells,
of which 7 (represented with thick boundaries) have logic values enforced from the outside;
therefore the con"guration space contains 611 elements, and its complete exploration requires

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2001; 29:37–47
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Figure 4. Maximum operating temperature versus the ratio of the intercell distance to the separation
between dots in a cell, for a majority voting gate, assuming C=1 and considering all possible combi-
nations for the other two inputs. The layout for a QCA majority voting gate is shown in the inset.

Figure 5. Layout of a QCA circuit implementing the logic function AB+CD. Cells with an externally
enforced polarization are represented with thick boundaries.

approximately 36 h on a DEC Alpha 500au workstation. Results are reported in Figure 6 for
two choices of the input variables: A=B=C=D=1 for Figure 6(a) and A=0, B=C=D=1
for Figure 6(b). A di!erence between the two cases is clearly visible, in particular for low
temperatures, and originates from the variation, between the two input con"gurations, of the
energy splitting between the "rst excited state and the ground state. In the case corresponding
to Figure 6(a) such a splitting is 0:159meV, while in the other case is 0:086meV: this leads
to a lower operating temperature being required to obtain the same error probability.

5. SIMULATED ANNEALING

The exploration of the con"guration space for the circuit with 11 active cells described in the
previous section was already taking 36 h on a high-performance workstation: addition of just
a few more cells, each of which involves a sixfold increase of such a time, would make the
calculation computationally unfeasible.
For this reason, we have implemented a technique, based on simulated annealing, which

allows to obtain the ground state and the low-lying excited states without exploring the whole

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2001; 29:37–47
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Figure 6. Plot of Pgs and Pclo as a function of temperature for a combinatorial network implementing
the operation AB+ CD, for A=B=C=D=1 (a) and for A=0; B=C=D=1 (b).

con"guration space. Simulated annealing has been already proposed in the context of QCA
circuits [6] as a means of actually operating the circuits themselves. In this paper, we will
instead show how it can be used for an e#cient simulation of QCA systems.
Simulated annealing basically consists in initializing the system in a random position in the

con"guration space, and then letting it evolve until it reaches the con"guration of minimum
energy. In particular, we start by assuming the system in a randomly selected con"guration
of energy E0 at an initial temperature T0. Let us call Ea the instantaneous (in the sense of
corresponding to the current con"guration) energy of the system: at the beginning Ea=E0.
Then, we pick a new con"guration at random, obtained from the current one by simply moving
one electron from one dot to another within the same cell. We then let the system evolve
into the new con"guration with a probability pnew depending on Ea and on the energy Enew
of the new con"guration:

pnew =
{

1 if Enew6Ea
exp[−(Enew − Ea)=kT ] if Enew¿Ea

(4)

The "rst condition allows the system to evolve along trajectories of descending energy, while
the second prevents the system from getting stuck in metastable states, corresponding to local
minima. This cycle is repeated many times, progressively decreasing the temperature from
T0 to a value at which a stable con"guration is reached. If the system is cooled down at
a su#ciently slow rate, the stable state is the ground state. In Figure 7 the instantaneous
con"guration energy and the temperature are plotted as a function of the iteration number for
a binary wire with six cells. In the case shown, the number of iterations required to reach the

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2001; 29:37–47
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Figure 7. Monte Carlo run of simulated annealing for a wire consisting of six cells. The instantaneous
energy (in Kelvin) and the temperature are plotted as a function of the iteration number.

ground state is larger than the total number of con"gurations (65 =7776); however, it increases
much more slowly with increasing number of cells, therefore becomes quite convenient for a
number of cells larger than 10.
In order to validate the code, it is useful to verify whether the thermodynamic properties of

the circuit are well reproduced with the simulated annealing method. The probability density
N (E; T ) that the system in a state of energy E is the product of the density of states D(E)
and of the Boltzmann factor P(E; T )

N (E; T )=D(E)P(E; T )=D(E)
e−E=kT

Z
(5)

We "rst obtain N (E; T ) from Equation (5), by computing the energies of all possible
con"gurations and hence, the partition function and the density of states. Then, we compute
N (E; T ) directly with the simulated annealing method, keeping the temperature constant, and
computing the statistics of the instantaneous energy by means of an average over iteration
cycles: N (E)&E is the ratio of the number of iterations at which the system is at an energy
between E and E +&E to the total number of iterations. In Figure 8, N (E) obtained from
the simulated annealing (solid line) and from the complete method (dashed line) are plotted
as a function of energy for four di!erent temperatures: 50, 20, 10 and 2K. In all cases the
agreement is extremely good.
In order to show the ability of the simulated annealing method to reproduce the thermo-

dynamic behaviour of QCA circuits, we have plotted in Figure 9 Pgs and Pclo as a function
of temperature for the two-level combinatorial network described in the previous section and
shown in Figure 6, for a given input: the agreement with the result obtained with the complete
method is extremely good.
There is actually a possibility for the simulated annealing method to get stuck in a con"gu-

ration corresponding to a local energy minimum and, therefore to converge to a state di!erent
from the ground state. In Figure 10 we show the relative frequency with which, repeating
the annealing sequence starting from di!erent random initial con"gurations, the actual ground
state and a few low-lying excited states are reached as a result, for a two-to-one multiplexer
circuit (shown in the inset of Figure 10). The ground state is obtained 54% of the times. Such
percentage can be adjusted and optimized by modifying the rate of decrease of temperature
with increasing iteration number. However, in general, the safer approach consists in perform-
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Figure 8. Probability density N (E; T ) that the system is in a state of energy E for four di!erent
temperatures: 50; 20; 10 and 2K: results obtained with simulated annealing (solid lines) and with the

complete exploration of the con"guration space (dashed lines).

Figure 9. Probability of the ground state Pgs and of correct logical output Pclo for the two-level combi-
natorial network described in Figure 6 for A=0; B=C=D=1: results from the complete exploration

of the con"guration space (solid lines) and from simulated annealing (dashed lines).

ing a sort of ‘thermal cycling’ procedure, i.e. letting the system converge to a stable state,
iteratively increasing the temperature T to drive the system to an excited state, and "nally
reducing T until a stable state is reached. Among all the obtained stable states, the probability
that the state of minimum energy corresponds to the real ground state is 1−(1−P1)m where m
is the number of thermal cycles and P1 is the probability of obtaining the ground state without
thermal cycling. For example, in the case shown in Figure 10 (P1 = 0:54), the probability of
"nding the ground state with eight thermal cycles is 0.998.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2001; 29:37–47
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Figure 10. Relative frequency of the ground state and of a few excited states in the outcome of the
annealing simulation.

6. CONCLUSION

Starting from a simpli"ed, semiclassical model for a QCA cell, we have developed a set of
tools that allow the simulation of QCA circuits containing relatively complex logic gates. Our
tools are aimed, in particular, at the analysis of the error probability due to the presence of
thermal excitations associated with "nite temperatures, and computational techniques are tuned
according to the size of the circuit to be simulated. Up to 11–12 cells it is possible to explore
the complete con"guration space, built starting from six di!erent states for each cell, while for
larger structures approximations must be used, in which we either reduce the number of cell
states considered, thus signi"cantly shrinking the overall size of the con"guration space, or
implement methods that involve exploration of only a portion of such space. We have found
that the error probability is mainly in%uenced by the ratio of the energy splitting between
the "rst excited state and the ground state to the thermal energy kT . If a reasonably low
error probability is to be achieved, the mentioned energy splitting must be at least an order
of magnitude larger than kT , which involves severe technological problems, because a large
energy splitting requires a strong electrostatic interaction, that, in turn, implies the availability
of very small cells [5].
The temperature dependence of the error probability has been computed for a binary wire,

for a majority voting gate and for a small combinatorial network: results show a similar
behaviour, with a maximum operating temperature for a given error probability that roughly
drops logarithmically with the number of involved cells. Signi"cant di!erences, however,
can be observed depending on the logic values at the inputs, which in%uence the splitting
between ground state and "rst excited state and, as a consequence, determine variations of the
allowed operating temperature for a given error probability. In order to evaluate the maximum
operating temperature for a QCA logic circuit, it is, therefore, necessary to compute the error
probabilities as a function of temperature for all possible input con"gurations and choose the
least favourable result.
For circuits that are too large to allow a complete exploration of the con"guration space we

have developed a simulated annealing technique which, starting from a random con"guration,
converges to the ground state in a number of iterations much smaller than the number of
possible con"gurations. A thermal cycling procedure has been devised to prevent the annealing
sequence from getting stuck in local energy minima. Our simulated annealing code has been
validated by comparing, with good agreement, the thermodynamic properties obtained for a
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few simple circuits with those computed with methods performing the full exploration of the
con"guration space.
The range of application of the simulation tools that we have developed is not limited to

the semiconductor implementation of QCA circuits: our codes can be easily adapted to any
QCA architecture, including those based on possibly bistable molecules or on the recently
proposed magnetic dot arrays [7], which have a potential for higher temperature operation,
due to the stronger cell-to-cell interaction.
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