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We investigate the feasibility of an adiabatic logic scheme for cellular automaton systems recently
proposed by Tóth and Lent #J. Appl. Phys. 85, 2977 !1999"$, based on structured arrays of six-dot
cells and on the use of a four-phase trapezoidal clock. With respect to the original quantum cellular
automaton !QCA" concept, focused on ground state computation, a clocked scheme would have the
advantage of being immune to the presence of metastable states and would allow pipelined
operation, at the expense of additional complexity, due to the clock distribution circuitry. Based on
realistic cell geometries and material systems, we have evaluated the obtainable switching times of
QCA cells, and have determined the region in the parameter space that allows operation at a
reasonable clock speed. © 2001 American Institute of Physics. #DOI: 10.1063/1.1365078$

I. INTRODUCTION

The quantum cellular automaton !QCA" architecture ini-
tially proposed in Ref. 1 has very innovative features with
respect to conventional electronic circuits. First, it is charac-
terized by extreme modularity: a QCA circuit is a structured
two-dimensional array of identical cells, each consisting of
four !or five" dots separated by tunneling barriers, with two
excess electrons, as sketched in Fig. 1!a". Binary information
is encoded in dot occupancy: electrons tend to align along
one diagonal !corresponding to logical ‘‘1’’" or along the
other !logical ‘‘0’’".

Cells are coupled with one another only through electro-
static interaction. Let us consider two adjacent cells such as
those shown in Fig. 1!b". If the logical state of a cell !the
driver cell" is enforced from the outside, then the other cell
!the driven cell" will evolve toward the same logical state,
since the configuration of minimum energy is the one corre-
sponding to the pair of electrons aligned along parallel di-
agonals. No current flows in the circuit across cell bound-
aries and no traditional interconnect lines are required, which
offers the perspective of extremely low power operation.

A QCA circuit performs logical operations on the basis
of the so-called ‘‘ground state computation’’ principle: the
input cells are set in the state corresponding to the logical
input vector, the system is allowed to relax to the ground
state, then the logical output vector is obtained by reading
the final states reached by the output cells. It has been dem-
onstrated by Lent et al.1,2 that any combinatorial logical
function can be implemented by properly assembling an ar-
ray of QCA cells.

Further details on the QCA architecture can be found in
Ref. 2 and references therein. Recently, experimental dem-
onstrations of the operation of coupled QCA cells and of a
majority voting gate have been successfully obtained with
cells consisting of metal islands connected by capacitive tun-

nel junctions.3–5 Very promising nanoscale cells have been
fabricated on silicon-on-insulator substrates.6

A few serious drawbacks of QCA architectures have
however been pointed out in the last few years. First, ex-
tremely tight fabrication tolerances !prohibitive, at least in
the medium term" are required for proper operation of QCA
circuits7 without a careful adjustment of each single cell.
Second, room temperature operation is not achievable with
semiconductor or metal QCA systems.8,9 The interested
reader can find further details in the cited papers. Molecular
implementations seem to be the only possibility of fabricat-
ing large scale QCA circuits operating at room temperature
and based on the electrostatic interaction, but detailed studies
on the subject are still missing, although some fundamental
difficulties have already been recognized, such as that of
obtaining a substrate without stray charges. Further problems
may appear when ground state computation is performed on
relatively large QCA systems: a large system is very likely to
get temporarily stuck in a metastable state, corresponding to
a wrong logical output, and to reach the ground state after an
extremely long time.10 For this reason, an adiabatic logic
scheme has been proposed, in which the evolution of the
system is driven by a multiphase clock.2

In the present work we will address the adiabatic opera-
tion of QCA circuits, focusing in particular on a recent pro-
posal by Tóth and Lent.11 In the following, we describe the
proposed implementation of adiabatic switching; then, we
perform an analytical calculation of the switching time as a
function of several device parameters and, focusing on a re-
alistic cell geometry, we determine the region in the param-
eter space that allows operation at an acceptable clock speed.

A. Six-dot QCA cell

Adiabatic switching of a QCA cell consists of letting the
cell evolve in the instantaneous ground state, and then
‘‘freezing’’ the electron configuration when the cell must be
used to drive nearby cells. This can be achieved by modulat-
ing the interdot barriers:2 barriers should be raised to lock the
electrons in the dots they are currently occupying, and then
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lowered slowly enough not to drive the system into an ex-
cited state. An interesting way of modulating the interdot
barriers in a metal dot QCA implementation has been pro-
posed in Ref. 11: it consists of replacing the barrier with
another dot whose potential can be varied by means of an
external voltage. A complete cell is shown in Fig. 2 and is
made up of six dots: the ordinary four dots !1, 3, 4, and 6"
plus the two dots required for the modulated barriers !2 and
5". The potential of each dot is adjusted by means of capaci-
tively coupled voltage sources.

Let us first focus on the left semicell, containing dots 1,
2, and 3, whose interaction is described classically by means
of capacitive couplings. The semicell configuration can be
described by means of the triplet of integers #n1 ,n2 ,n3$ ,
which represent the occupations of dots 1, 2, and 3, respec-
tively. Under operating conditions there is only one excess
electron, thus the three possible configurations are #1, 0, 0$,
#0, 1, 0$ and #0, 0, 1$. The semicell operation is controlled by
the central-dot voltage Vc .

When Vc is kept sufficiently low as to make the #0, 1, 0$
configuration energy much higher than the #1, 0, 0$ or
#0, 0, 1$ configuration energies, the semicell is locked in one

of these last states, because Vc creates a potential barrier that
prevents the motion of the electrons between dots 1 and 3.
On the other hand, if the central-dot potential is much larger
!lower electron potential energy" than the others, the semicell
is said to be in the null state, which corresponds to the excess
electron stuck in the central dot !state #0, 1, 0$". The last
condition, the active condition, is obtained when the energy
of the #0, 1, 0$ configuration is comparable to that of the
other configurations.

Semicell operation is achieved by varying the central-dot
potential, and thus the cell condition, from the null to the
locked state and vice versa. In the null state the semicell does
not interact with the neighboring cells, while in the active
state electrons can move across the semicell and the local
ground state can be easily reached. Finally, in the locked
state, the configuration is frozen and thus the semicell can be
used as a driver element.

By applying an appropriate clock sequence to the cells
of the QCA system, it is thus possible to control the data
flow and to avoid the problems connected with the existence
of metastable states.2

Typical operation is sketched in Fig. 2.11 The first semi-
cell is locked and has an excess electron in the upper dot
!black dot". This causes an energy difference 2% between the
configurations #1, 0, 0$ and #0, 0, 1$ of the second semicell.
The second semicell is initially in the null state, and the
potential of its central dot is gradually raised to allow switch-
ing: we are in the situation depicted in Fig. 3, where we
show the energy levels of the three possible configurations.
Figure 3!a" corresponds to the initial null state. The tunnel-
ing process becomes possible when the central level ap-
proaches the energy of the lower of the other two, as in Fig.
3!b", and becomes more important as the energy difference
&'E010!E001 increases. The single-electron tunneling rate
increases with & because of barrier distortion and of the in-
crease in the number of electrons which can tunnel from the
central dot.

While it is clear that metastable states are no longer a
problem for adiabatic logic, signal propagation is limited by
the switching time of single cells. Proper operation can be
obtained if transition rates for tunneling are sufficiently large
to allow an electron to actually tunnel into the proper dot
while the cell is in the active state. Moreover, the energy
unbalance 2% needs to be much larger than kT. In the fol-
lowing, we will evaluate the switching times by computing
the transition rates for electrons as a function of material
parameters and cell geometry, for an energy of the #0, 1, 0$
configuration intermediate between those of the #1, 0, 0$ and
#0, 0, 1$ configurations.

II. TRANSITION RATES FOR A SEMICELL

In order to obtain results in a quasianalytic form, we will
make several simplifying assumptions. We emphasize that
we intentionally choose approximations that lead to an over-
estimation of tunneling rates. This means that our results
give an optimistic prediction of the maximum obtainable
clock frequency.

FIG. 1. !a" A QCA cell consists of four dots separated by tunneling barriers
with two excess electrons; electrons tend to align along one diagonal !logi-
cal ‘‘1’’" or along the other !logical ‘‘0’’"; !b" If the driver cell is set into a
specific logic state, the driven cell will evolve toward the same logical state,
in order to minimize the total electrostatic energy.

FIG. 2. The entire cell, made up of six dots. Each semicell consists of three
dots connected by tunneling junctions and coupled to external voltage
sources via capacitors.
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We neglect charging effects and energy quantization in
the dots and, in addition, we consider the case in which the
interdot barrier thickness is much smaller than the dot size,
so that the tunneling process can be essentially studied in one
dimension, in the direction normal to the junction !z axis", as
shown in Fig. 4. This approximation also leads to an overes-
timation of the tunneling rate with respect to the three-
dimensional case, since perfect overlap between transverse
states is assumed.

Regions 1 and 2 in Fig. 4 represent the central and side
dots, respectively, while the barrier is due to the insulating
medium that separates the dots.

The important parameters are the barrier thickness a and
height B, the effective electron mass in the dot m, and inside
the barrier mB , the energy offset %, and the distance between
the Fermi level and the bottom of the conduction band in the
dots E*. If we set the reference value for the energy at the

bottom of the conduction band of dot 1, we can define the
quasi Fermi levels of dots 1 and 2, respectively, as EF1
'E* and EF2'E*!% , as shown in Fig. 4. In the following
we will also need the dielectric constant ( of the insulator.

Let us now consider an electron of transverse wave vec-
tor k ! and energy Ez along the z axis. We can assume con-
servation of spin, total energy, and transverse wave vector
during tunneling, therefore the current density across the bar-
rier can be written as

J"
2e
) " dEz" d2k !

!2*"3
2T!Ez"#F!E ,EF1"!F!E ,EF2"$ ,

!1"

where F(E ,EFi) is the occupation probability for a state of
energy E in dot i, the 2 factor considers spin degeneracy, e is
the electron charge, and ) is the reduced Planck constant.
The barrier transmission probability is denoted T(Ez), which
in our case does not depend on the transverse wave vector.
The integral is over all k! and Ez#0.

If we assume to be in the low temperature limit, we can
describe the occupation probability as a step function and we
have

F!E ,EF1"!F!E ,EF2"

"+!E!EF2"+!EF1!E "

"+!E!EF1$%"+!EF1!E ". !2"

For simplicity, we assume parabolic bands, so that E
"Ez$)2k !

2/(2m), and we use for E* an effective value
which allows a correct estimation of the density of states at
the Fermi energy. After performing a change of coordinates
to ,2')2/(2m)(kx

2$ky
2) and -'arctg(ky /kx), we can

write Eq. !1" as

J"
me

4*3)3 " dEzT!Ez""
0

2*
d-" d,,

%+!E*!Ez!,2"+!Ez!E*$,2$%". !3"

If Ez&E*!% , the integration domain is represented by the
circular area enclosed between two circles of radius ,1
"!E*!Ez!% and ,2"!E*!Ez, while, for E*!%&Ez
&E*, the domain is the disk of radius ,"E*!Ez . Thus,
performing a polar integration, we obtain

FIG. 3. Representation of the energy for the different configurations and of
the tunneling path for three consecutive time steps. The #0, 1, 0$ energy
increases due to the decrease in the control voltage Vc! .

FIG. 4. The conduction band profile used to estimate the tunneling rate
between the central dot and a side one. We show the typical biased situation
which corresponds to Fig. 3!c".
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J"
me

2*2)3 # "0E*!%
dEzT!Ez"%

!"
E*!%

E*
dEzT!Ez"!E*!Ez"$ . !4"

We now need an explicit form for the transmission co-
efficient. Limiting our analysis to the case in which the bar-
rier can be considered much higher than the electron energy,
we can write

T!Ez".
Ez

B exp #!
2a
)

!2mB!Beff!Ez"$ , !5"

where Beff is the effective height of the barrier seen by an
electron of longitudinal energy Ez . If the deformation of the
barrier due to the junction bias is small, we can simply
choose its average height Beff"B$E*!%/2. The integrals in
Eq. !4" result in a complicated polynomial expression, which
we shall evaluate numerically.

If S is the area through which the electrons can tunnel
from one dot to the other, the transition rate can be written as

/"JS/e . !6"

If %'E*, the current density and the rate / depend linearly
on %. When % approaches E* we have a quasisaturation of
the current #for %"E* the first integral in Eq. !4" and any
explicit dependence on % vanish$. For larger bias J still de-
pends on %, but only through the dependence of the trans-
mission coefficient T on this parameter. In Fig. 5 we plot /
as a function of % for Al dots and highly doped Si dots and
a SiO2 barrier of thickness a"2 nm and cross section S
"100 nm2. The main difference between the two cases lies
in the value of E*. We computed it in the free electron
approximation; in the metallic case we can use the measured
free electron density as shown in Ref. 12 to obtain E*
"11.7 eV for the Al case, while in the silicon case the para-
bolic approximation gives E*.0.15 eV. In this last case we
can observe the saturation of / for values of % comparable to
E*. The linear tunneling resistance at zero temperature can
be calculated as RT"%/(e2/) for %'E*.13

III. EXPLORATION OF THE PARAMETER SPACE
A. Tunneling rate

We want to determine the region of parameter space
where the tunneling rate is large enough to allow adiabatic
switching of the cell with a frequency useful for practical
purposes. We assume that in order to obtain a switching
frequency of 10 MHz the tunneling rate has to be at least 100
times larger: therefore our minimum transition rate is /min
"109 s!1.

Before examining the particular cell described in Fig. 2,
we shall discuss the general parametric dependence of the
rate introduced in Eq. !6". To explore the multidimensional
parameter space we need a strategy allowing for a simple
visualization of the acceptable parameter regions. We first
study some different material combinations and concentrate
on barrier characteristics. For each considered temperature T,
we assume a value of the energy unbalance % sufficient for
operation at T, namely %"10kBT . It is not trivial to satisfy
this condition, as we will discuss in the following.

There are three barrier parameters: the barrier height B,
the barrier thickness a and the electron effective mass inside
the barrier mB . In Figs. 6!a"–6!d" we choose a"2 nm, and
plot the curves corresponding to /"/min"109 s!1, given by
Eqs. !4" and !5".

In each figure we show three different choices of the dot
material and two values of the operating temperature: T
"4.2 K !solid lines" and T"77K !dashed lines". Moreover,
for each temperature we report results for two typical junc-
tion surface values: S"10 nm2 and 104 nm2, which corre-
spond to the lower and upper curve, respectively. The area
below each curve corresponds to a transition rate larger than
109 s!1, i.e., to the acceptable region. We also added markers
corresponding to the values of B and mB of typical barrier
materials.

We considered degenerately doped semiconductors,
namely n$-doped Si and Ge with ND"1020 cm!3 and GaAs
with ND"1019 cm!3. In degenerate semiconductors donor
levels form an extended subband, which practically mixes
with the conduction band. As a result, we have an effective
thinning of the energy gap and complete donor ionization,
even at zero temperature, so that n"ND .

In Figs. 7!a"–7!d" the same data are computed for an
extremely optimistic barrier thickness a"1 nm !while SiO2
layers thinner than 1 nm have been successfully fabricated, a
1 nm thick insulating layer in the lateral direction is beyond
the current state of the art".

To discuss these results, we first point out that the in-
crease of the tunneling rate with increasing temperature is
simply due to the fact that we are considering different val-
ues of % for each temperature, assuming that the energy un-
balance % is equal to 10kBT: if T increases, we have a pro-
portional increase of % and, as a consequence, of /. In the
following section we will discuss the constraints this require-
ment poses on cell geometry.

As expected, the rate strongly increases with decreasing
barrier thickness a. As can be seen in Fig. 7!a", with a
"1 nm and Al dots we can obtain a sufficiently large rate for
practically any choice of insulator, temperature, and junction

FIG. 5. The tunneling rate as a function of the energy offset %. The two
results correspond to an Al dot !solid line" and to an n-doped (n
"1020 cm!3) Si dot !dashed line". In both cases we choose SiO2 as a di-
electric and the value of the parameters are: a"2 nm and S"100 nm2.
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area. However, Fig. 7 is mainly a demonstrative result, be-
cause fabricating a structure with such a fine spatial resolu-
tion is likely to be beyond technological capabilities in the
medium term.

Figure 6 presents results for a slightly more realistic
structure which, however, is still well beyond the current
state of the art. From these two figures we can draw some
general conclusion: with semiconductor dots, even with very
high doping, the number of carriers is lower than in the me-
tallic case while, on the other hand, the tunneling barrier
height B can be much smaller and, using AlxGa1!xAs-GaAs
or SixGe1!x-Ge, can be reasonably adjusted.

There are two possible main choices: we can use metal
islands or semiconductor quantum dots. In the first case we
have the advantage of a very large number of carriers avail-
able for tunneling, and the transition rate is only limited by
the barrier height and the effective mass of available insula-
tors. In the second case lower barrier heights and smaller
effective mass values in the barrier are available, while the
number of carriers in each dot is extremely limited. Perspec-
tives for the metal island solution seem more promising,
since the possibility of using intrinsic semiconductors as in-
sulators can make available a wide range of thin gap mate-
rials, with low barrier height and low effective mass.

FIG. 6. The curves indicate the values of the barrier height B and of the
effective mass mB !expressed in terms of the electron mass" for which the
rate /"109 s!1. We show the T"4.2 K !solid lines" and T"77 K !dashed
lines" cases. The two curves for each temperature indicate the rate for a
junction surface S equal to S"10 nm2 !lower curve" and S"104 nm2 !upper
curve". The barrier thickness is a"2 nm. We consider typical barrier and
dot materials. The wide dashed region in !c" approximately indicates the
range of SiGe parameters for varying strain and Ge concentration. The
dashed thick line in !d" indicates the range of values for an Al1!xGaxAs
alloy.

FIG. 7. The curves indicate the values of the barrier height B and of the
effective mass mB !expressed in terms of the electron mass" for which the
rate /"109 s!1. We show the T"4.2 K !solid lines" and T"77 K !dashed
lines" cases. The two curves for each temperature indicate the rate for a
junction surface S equal to S"10 nm2 !lower curve" and S"104 nm2 !upper
curve". The barrier thickness is a"1 nm. We consider typical barrier and
dot materials. The wide dashed region in !c" approximately indicates the
range of SiGe parameters for varying strain and Ge concentration. The
dashed thick line in !d" indicates the range of values for an Al1!xGaxAs
alloy.
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B. Energy unbalance as a function of coupling
capacitances

In this section we focus on the relationship between the
energy unbalance % and the geometrical structure of a cell.
We refer to the cell described in Sec. I, and compute the
electrostatic energy of the different configurations.

The cell system, made up of six metallic dots with ca-
pacitive interaction, can be described in a completely classi-
cal way by considering the values of five capacitances. The
configuration energy of the cell can be written as the total
energy

E"
1
2 !q q!"C!1% qq! &!v"q!, !7"

where v is the vector containing the voltages on the leads and
q,q! are the vectors of the charge on the dots and on the
leads, respectively. C!1 is the inverse of the capacitance
matrix. By using Eq. !7" we can evaluate the energy differ-
ence between two configurations which differ in the position
of one electron !see Fig. 3". In our notation, this energy
difference is 2%. Moreover, the symmetry properties of the
cell we are considering warrant that % depends only on the
three capacitances, C, C2 and C4 , as can be seen in Fig. 2.

In Fig. 8 we show the region in the capacitance space
where % is larger than a certain value. We show the accept-
able region for two different values of %: %"3.6%10!3 eV
!upper surface" and %"6.7%10!2 eV !lower surface", which
correspond to %"10kBT for T"4.2 K and T"77K, respec-
tively. It is worthwhile to point out that the energy unbalance
is a decreasing function of C and C4 but increases as C2 is
increased. As we see from Fig. 8, the acceptable area
strongly decreases as we increase the value of %: capaci-
tances of the order of a few attofarad are required for opera-
tion at 4.2 K, while capacitances close to 1 aF are required
for operation at 77 K. While these values can be obtained in
principle, it would be extremely difficult to obtain a satisfac-
tory tradeoff with the barrier thickness required for a suffi-
ciently large tunneling rate.

On the other hand, a very large value of C2 would mean
a large structure, or a distance small enough to make possible
electron tunneling between different semicells, which should
be avoided.

It is clear that the same physical and geometrical param-
eters affect both the transition rates and the energy unbalance
in a complex way. For this reason, in Sec. IV we will con-
sider a particular cell geometry and explore the possibility of
fitting the physical constrains just discussed.

IV. AN EXAMPLE OF A SIX-DOT CELL

Let us focus on the cell of Fig. 2 and on a simple geom-
etry, namely a cell made up of six parallelepiped dots located
on a rectangular mesh as shown in Fig. 9. With this configu-
ration the important parameters are the dot dimensions !l1 ,
l2 and h", the intracell distance b and the tunneling barrier
width a. We also need to take into account the dielectric
constant of the insulating medium in which the dots are em-
bedded, the tunneling barrier height B and the effective elec-
tron mass mB in the barrier, which again depend on the in-
sulator. The last parameters to be considered are the values
of E* and m, which depend on dot material. Considering
technological limitations, we can assume a lower limit for
the distances between dots on the order of a few nanometers,
while we can choose the other parameters from a relatively
wide range, thanks to the various material combinations that
can be used.

After choosing a parameter set, we can compute the
electronic tunneling rate by using the results of Sec. II and,
as a first order approximation, the parallel plate capacitor
formula for the evaluation of the various capacitances and of
the electrostatic energy unbalance via Eq. !7".

We consider a metal–insulator cell, consisting of Al dots
with three different insulators: SiO2, Si3N4, and Si, and two
possible values of the barrier thickness a: 2 and 3 nm. Other
parameters are b"5 nm and l1"l2"h"10 nm, while B,
mB , and (r depend on the insulator as shown in Table I.

FIG. 8. The regions under the wire-mesh surfaces represent the regions in
the parameter space 0C ,C2 ,C41 where %#3.6%10!3 eV !upper surface"
and %#6.7%10!2 eV !lower surface". The two surfaces correspond to an
operating temperature of 4.2 and 77 K, respectively.

FIG. 9. A sketch of the considered cell geometry.

TABLE I. Material parameters for different choices of the insulator between
Al dots. B is the barrier height, (r the relative dielectric constant, mB the
effective mass in the barrier !in units of the electron mass in a vacuum".

SiO2 Si3N4 Si

B 3.05 eV 2.1 eV 0.8 eV
(r 3.9 6.7 11.1
mB 0.3 0.2 0.33
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The results for the rate are shown in Table II, where we
also show the energy unbalance % and the maximum operat-
ing temperature Tmax'10kB /% .

As we noted previously, due to the exponential depen-
dence of the rate on barrier dimensions, the barrier thickness
a, the barrier height B and the mass mB are critical param-
eters. The barrier thickness can be reduced if fabrication
technology is improved, while mB and B depend on material
choice. For example, by simply reducing a down to 2 nm, we
obtain for the previous example !with Si as an insulator" /
"2%109 s!1, which would be an acceptable rate.

A more detailed study can be done in the 0a,b,L1 param-
eter space, in which we consider cubic dots with edge length
L. In Fig. 10 we plot the surface in the 0a,b,L1 space corre-
sponding to /"/min"109 s!1. Points below the surface cor-
respond to a larger tunneling rate. It is quite clear that the
tunneling rate is strongly dependent on the interdot distance
a and that, even for large dot sizes, we need a very small a to
obtain an acceptable rate. On the surface shown in Fig. 10
we also plot curves corresponding to given maximum oper-
ating temperature values Tmax .

This clearly represents another important constraint:
very small dots !small L" and small intercell distances b are
required to obtain an energy unbalance % suitable for opera-
tion at a temperature of a few Kelvin.

V. CLOCKED QCA SIMULATOR

We performed a numerical simulation of a chain of
semicells, in order to verify some of the assumptions made in
the previous sections, and to assess the actually achievable
operating frequency for the circuit.

We considered a simplified model, which is however
still capable of reproducing the main features of the system.
We studied the propagation of a signal along a QCA wire
made up of five semicells. A simplified view of the chain is
shown in Fig. 11, where the bias voltage sources are not
indicated. We have chosen an initial condition with an ex-
cess electron in the upper dot of the first semicell and with
the excess electrons of the other semicells in the central dots.
The first semicell has been set in the locked state !no transi-
tion allowed" by adjusting the voltage Vc of its control gate,
while all the other gate voltages have been set at a value
corresponding to the null state. Then we sequentially sweep
the control voltage Vc of each semicell until the end of the
chain is reached, as shown at the bottom of Fig. 11.

The gate voltage is swept linearly from the value corre-
sponding to the null state to that corresponding to the locked

TABLE II. Tunneling rate 2 and maximum operating temperature Tmax for different choices of the insulator
between aluminum dots. The quantity 2% corresponds to the energy unbalance between different configurations,
a is the barrier thickness.

a"3 mn a"2 mn

SiO2 Si3N4 Si SiO2 Si3N4 Si

3 18.9 s!1 4.7%105 s!1 1.1%107 s!1 4.5%105 s!1 3.5%108 s!1 2.1%109 s!1
% 1.5%10!2 eV 1.2%10!2 eV 8.6%10!3 eV 9.8%10!3 eV 7.6%10!3 eV 5.1%10!3 eV
Tmax 16.9 K 13.8 K 9.9 K 11.4 K 8.8 K 5.9 K

FIG. 10. The surface indicates the region in the 0a,b,L1 parameter space
which corresponds to a rate %"109 s!1. All lengths are expressed in na-
nometers, and the device is made up of Al dots and intrinsic Si acting as an
insulator. In the region below the surface the rate is larger. The continuous
lines indicate the working temperature Tmax .

FIG. 11. A schematic view of the semicell chain and of the time sequence of
the control gate voltages.
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state; the rise time 4 can be assumed to be one quarter of the
period of the trapezoidal clock.

For the simulation, we need to know the values of the
capacitances and of the tunneling resistance. These param-
eters can be obtained from the previously described model,
once device sizes and materials have been specified. In par-
ticular, the tunneling resistance RT is obtained from the tun-
neling rate of Eq. !6". We can also include the effect of finite
temperature on the transition probability between two con-
figurations which differ by an energy %13 so that the transi-
tion rate reads

/"
%

e2RT!1!exp!!%/kBT ""
. !8"

This will allow also for transitions to a higher energy con-
figuration.

The maximum and minimum values for Vc , which cor-
respond to the locked and null states, depend on system pa-
rameters. We determine them by computing the energy of
the three possible semicell configurations. The maximum
value of Vc !which corresponds to the null state" is that for
which the #0, 1, 0$ configuration energy is 10kBT lower than
the minimum energy between the #1, 0, 0$ and #0, 0, 1$
configurations. Similarly, the minimum value of Vc is that
for which the energy of the #0, 1, 0$ configuration is 10kBT
higher than the maximum between #1, 0, 0$ and #0, 0, 1$.

We consider semicells consisting of cubic 10 nm Al dots
embedded in Si, with intercell distance a"2 nm and intracell
distance b"5 nm. From Table II, the maximum operating
temperature of such cells is 5.9 K and the transition rate is
/"2.1%109 s!1.

We perform the simulation at a temperature of 2 K, lock
the first cell in state #1, 0, 0$ and sequentially activate the
other semicells through the control gate voltage, as shown in
the lower part of Fig. 11. The time evolution of the state of
all semicells for a single Monte Carlo run is shown in Fig. 12
for three different values of the rise time 4 : 10!7 s #Fig.
12!a"$, 10!8 s #Fig. 12!b"$, and 10!9 s #Fig. 12!c"$.

As can be seen, for 4"10!7 #Fig. 12!a"$ thermal heating
allows the semicell to bounce back and forth between the
initial and final configurations during the active state, while
this behavior is not observed for 4"10!8 s #Fig. 12!b"$.
Proper operation is not obtained for the shorter rise time 4
"10!9 s #Fig. 12!c"$, which is comparable to 1//.

A quantitative assessment of QCA chain operation as a
function of temperature and rise time can be done by per-
forming a simulation over a statistical ensemble of Monte
Carlo runs. In Fig. 13 we plot the probability of correct op-
eration Pco as a function of temperature and rise time. Pco is
close to unity for 4#2%10!8 s and T&3 K, while it goes
smoothly to zero for higher temperatures and smaller rise
times.

VI. DISCUSSION

We have investigated the feasibility of an adiabatic logic
scheme for cellular automaton systems based on cells in
which the tunnel barriers between dots can be controlled by
an external voltage. Information flow is driven by a four-

FIG. 12. Time evolution of a clocked binary array of Al–Si cells corre-
sponding to a rise time of 10!7 s !a", 10!8 s !b", and 10!9 s !c". We have
considered cubic Al dots with edge L"10 nm, intracell distance a"2 nm,
and intercell distance b"5 nm. Symbols 0, !, and $ on the vertical axis
correspond to states #0, 1, 0$, #1, 0, 0$, and #0, 0, 1$, respectively.

FIG. 13. Probability of correct operation Pco of a clocked QCA chain as a
function of the rise time 4 and temperature. We have considered cubic Al
dots with edge L"10 nm, intracell distance a"2 nm, and intercell distance
b"5 nm. The shaded area corresponds to a value of Pco larger than 0.99.
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phase trapezoidal clock, which removes the problem of
metastable states that might be responsible for indefinite de-
lays in the evolution of the system towards the ground state.

We have derived a quasianalytical formula for the tun-
neling rates between dots for typical material parameters and
device geometries, and we have evaluated the region in the
parameter space that allows a transition rate of at least
109 s!1, which would make possible a clock frequency of 10
MHz. A clock frequency much smaller than 10 MHz would
not be interesting from the point of view of applications,
because the speed of propagation along a binary wire is lim-
ited to the ratio of cell-to-cell distance to the rise time !a
quarter of the clock period". Let us point out that in our
derivation we have consistently used approximations that
lead to an overestimation of transition rates. This means that
our model can be used to select promising solutions for fur-
ther investigation.

Implementations based on metal islands embedded in in-
trinsic semiconductors used as insulators seem the most
promising, providing at the same time large electron density
and low barrier heights. Based on the results derived, we
have focused on a specific example of a six-dot Al–Si cell
with a transition rate larger than 109 s!1 at 4.2 K, and have
used a purposely developed Monte Carlo simulator to test the
validity of our assumptions and evaluate the maximum op-
erating frequency in the temperature range 0–16 K.

While the proposed structure can successfully operate at
a clock frequency slightly larger than 10 MHz at a tempera-
ture up to 3 K, we must point out again that fabrication of
such a device structure is beyond the technological capabili-
ties expected in the medium term. The problem of metastable
states is successfully solved with the adiabatic logic scheme,

but the overhead circuitry required for individually tuning
each cell in order to compensate for asymmetries due to fab-
rication tolerances and stray charges is still required, in ad-
dition to that for clock distribution. This is the most serious
obstacle for any actual large-scale implementation of QCA
systems except, maybe, for those based on magnetic
nanostructures14 and, possibly, molecular cells, whose devel-
opment is currently at a very early stage.
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