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Abstract

For an initial minimum-uncertainty-product Gaussian wave packet incident on an opaque barrier we investigate how
small its spread Ak in wave number must be in order that the Bohm trajectory mean transmission time be well approximated
by the stationary-state (Ak = 0) expression of Spiller, Clark, Prance and Prance.

1. Introduction

Many different theoretical approaches (see Refs. [1-4], and references therein) have been applied to the
calculation of various characteristic times associated with a particle interacting with a potential barrier. This
Letter ties up a loose end associated with the approach based on Bohmian mechanics.

Consider an ensemble of a very large number of identically prepared single-particle one-dimensional
scattering experiments. In each, a Schrodinger electron with the same initial wavefunction (z, 0), normalized
to unity, is incident from the left on a static potential barrier which, for simplicity, is assumed to be zero outside
the range 0 < z < d. The mean transmission time 7(z;, z,) is defined as the average time spent in the region
7, <z <z, subsequent to =0 by those electrons that are ultimately transmitted; the mean reflection time
t4(z,, z,) is the corresponding quantity for those that are reflected. Finally, the mean dwell time 7,(z,, z,) is
the average time spent between z, and z, irrespective of whether the scattered particle is transmitted or
reflected. It is assumed that the probability of the particle being either absorbed or trapped for an infinitely long
time by the scattering potential is zero so that the transmission and reflection probabilities, [T ] and |R|’
respectively, sum to one. It is also assumed that the initial centroid z, = (¢ "(z, 0)zy(z, 0)> of the wave
packet is chosen so that the integrated probability density | ¢(z, 0)|? from z = Min[z,, 0] to « is negligibly
small compared to | T | * (by a factor of 10™* in the calculations presented here).

According to Bohmian mechanics [5-12] an electron is an actual particle the motion of which is causally
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determined by the wavefunction ¢(z, ¢) so that it has, at each instant ¢ of time, a well-defined position z(t) and
velocity
J(z, 1)
2
|¢(Z’ t)' z=2z(t)

where J(z, 1) =(h/m) Im[¢ *(z, )ad(z, t)/8z] is the probability current density. The electron’s trajectory
2(z®, t) is uniquely specified by (z, 0) and its initial position z® = z(z®, 0). The latter is unknown but
statistically distributed according to P(z®) = | y(z®, 0)|*. It readily follows [13] that

u[z(t),t]= s (1)

(215 22)=|T|ZTT(ZI722)+IRIZTR(ZPZZ)’ (2)
with
7o( 2y zz)=f0 dtj;l dzly(z, 1) =f0 dt t[J(zy, 1) =J (21, 1)], (3)
1 o
(2, 2,) = Ilefo dt t[J1(z,, t) —J1( 2y, 1)], (4a)
1
o2 2) = |2f dt t[Je( 23, 1) = Tel 21, 1)]. (4b)

The first expression in (3) is well known, the second follows upon multiplying the continuity equation
aly(z, |? /1 + aJ(z, t)/3z= 0 by t and then integrating over z from z, to z, and over ¢ from 0 to « [14].
The components of J(z, t) associated with transmission and reflection are given by

In(z, 1) =H(z, )0 2= z(1)], (52)
Je(z, 1) =7(z, )0 2(1) ~ 2], (sb)

where z(¢)=z(z{, 1), the bifurcation line separating transmitted from reflected trajectories, is defined
1mplncltly by

|T|2=fx()dz|¢(z,t)|2 (6)

z (s

(@(z) is the unit step function equal to 0 for z <0 and 1 for z > 0).

Rather than consider the time-evolution of an incident wave packet of finite spatial extent, Spiller, Clark,
Prance and Prance (SCPP) [15] applied Bohmian mechanics to the stationary-state scattering problem. For
““incident”” electrons of wave number & and energy E = #2k?/2m they identified the mean transmission time,
assuming that the transmission probability |T(k)|“ is non-zero, with the quantity

2z
b b k
To( 215 255 k) = f1 Uk(Z)
where v,(z) is the stationary-state particle velocity
Jo |T(k)|*(Bk/m)
(2 )|2 |‘f’k(z)l2

Here, ,(z) exp(—iEt/#) and J,(z)=J, (independent of z) are the stationary-state wavefunction and
probability current density respectively (the wavefunction is now normalized so that the incident flux J, , is
#k /m). SCPP applied (7), (8) to the special case of a rectangular barrier V(z) = V,0(z)@(d — z). Twenty
years ago Hirschfelder et al. [16] also considered the quantity on the right-hand-side of (7) from the point of

(7

v(2) = (8)
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view of Bohmian mechanics but regarded it as having ‘‘little physical significance’’. On the other hand, many
authors [17-22] have used (7), (8) to study the dynamics of electronic transport in devices, a few apparently not
aware of the connection with Bohm’s meory

If the stationary-state limit of Eq. (3) is derived [23] taking into account the different prescriptions for

normalization, the well-known result [24]

7 m 2y 5
(2 Zz;k)=ﬁ dz| ¢ (2)| (9)

L

for the mean dwell time is obtained. Comparing (9) with (7) and (8) it follows immediately that

-2
(21, 225 k) = [T(k)| “1p(zy, 25 k). (10)
Application of (2) then leads to the surprising conclusion
2
(21, 23 k) =0 (0<IT(k)|*<1). (11)
That reflected electrons never enter the region z >z, with z, arbitrary, not even when the transmission

probability is exceedingly small (but finite), also follows from (8) because v,(z) is never negative (k> 0 for
electrons incident from the left).

Leavens and Aers [13] expressed reservations about determining the temporal characteristics of a scattering
process by studying only the stationary-state (Ak = 0) case. They attempted to test the validity of (7), (8) via
(11) by carrying out accurate numerlcal calculations of 7¢(0, d) for the special case of Gaussian wave packets
of average wave number k, ~ 1 A ! and spread Ak = 0.08, 0.04, 0.02 and 0.01 A" incident on a rectangular
barrier of height V, = 2E,=2#%k;/2m =10 eV and width d=35 A. The results were inconclusive: even
though the calculated values for | R | 2'rR(O d) can convincingly be extrapolated linearly to a value at Ak=10

that is very close to 7.(0. d: k.), apparently disproving (11). thev actuallv do not rule out the nossibility that

Lidl 1S L0500 Dy &, K, appaiCiilly QISpPrOVIAE 24/, Wil atiually GO DO 18I0 Oul UIC POSSIDLRY Wial

| R 'rR(O, d) eventually plummets to zero for sufficiently small Ak. In this paper it is shown that the latter
behaviour is n fact the correct one. In Section 2 a method is discussed for deriving approximate, closed form
expressions for (0, ¢) and J(0, ¢) that are accurate in the regime Ak/k, very much less than unity. Also, a
simple expression is suggested for estimating how small Ak/k, must be before the stationary-state regime,
defined here by the condition | R|* (0, d) < 75(0, d), is effectively reached. In Section 3 calculated results
for the dependence of |R| 2ﬂrR(O d) on Ak as Ak approaches zero are presented They confirm the correctness
(rithin Dobeton tmnnbhorliac) f tha avmracoionn far tha tmaom from o tood e tina oo tho ctodint oo otodo Sivan

L WILlLL uuuuuau HICLIIALICDJ Ul l.llC CAPICDDIUII 1ul lllC mcan uauauuamuu lllllC lll e bldllUlldly aldle lllllll glVUll
by Spiller et al. [15]. Concluding remarks are made in Section 4.

2. A method for approaching the stationary-state limit

The approach to the stationary-state limit Ak = 0 is made here assuming that the Fourier transform ¢(k) of
the incident component ,(z, t = 0) of the initial wavefunction is Gaussian, i.e.

e | (kk) |
b(k) = ———zexp| —| ———= —i(k—kg)z|, (12)
(Ak)"= | \ 28k ) |
where k, is the centroid of | ¢(k) |’ and z, that of |y,(z, O)l In the calculations presented below, z, is
chosen so that the 1nte§ral of | (2, 0} over the region 0 <z <= is equal to 107*|T| 2 je A= —z,Ak

= 3N (1 —10"*|T|*) where N~ '(x) is the inverse of the normal distribution function. The dependence of A
on Ak as Ak approaches zero is negligibie (A is between 2 and 3 for the two exampies considered in the next
section). With the above choice for ¢(k) the time-evolved incident component

Ui z, t)_[ ¢(k) exp(ikz) exp(—ifk’t/2m)  (z<0) (13)
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can be evaluated analytically in closed form but the reflected component

y N e dk p 12 e . o
Yplz, 1) =} —¢(k)R(k) exp( —ikz) ex (—mk,zt/Zm) (z<0) (14)
in general cannot. In (14), R(k) = | R(&)| expli op(k)]) = explln | R(k}| +i¢pg(k)] is the reflection probability

\RrJ| LI ¥R i
amplitude. Now, in the approach Ak — 0 to the stationary-state limit (Ak = 0), it should ultlmately be an
excellent approximation to expand In| R(k)| and ¢y(k) in the integrand of (14) about the peak wave number
k =k, of | $(k)|* to order (k — k,)* (hereafter referred to as the quadratic approximation). Then (14) becomes
a Gaussian integral which can be evaluated analytically. Using the resulting expressions for (z, r) and
dplz, ) in Y(z<0, 1) =¢,(z, )+ Pg(z, 1), the corresponding analytic approximation to the probability
current density J(z, £) = (A/m) Im[¢ *(z, t)dp(z, 1)/3z] for z <O follows. Now consider the usual case in
which there are no reentrant transmitted Bohm trajectories through the leading edge of the barrier at z = 0 (this
is certain]y the case for the two systems studied in Section 3). Since Bohm trajectories do not intersect each

~thae IO 12) 4hacas than o Aa 133 ; ’s
otner |_7,1_)_|, there is then a time LTR defined ﬁ‘ﬁpthﬂy by (ZTR) =0 such that Oﬂ}y to be transmitted

electrons enter the barrier for ¢ < £; and only *‘to be reflected”” ones for ¢ > t1z. Then J(O, 1)g = J(0, )O(s
— tz) and it follows from (4b) that

| RI%rg(0, d) < | RI*rg(0, ) = — [ dr (0, ). (15)
‘tr
In the next section, where the behaviour of |R|2'TR(0, ) as Ak — 0 is studied, there are no reentrant
trajectories through z=4d for the two barriers considered. Hence 71(0, d) is equal to 74(0, ) and the
distinction is dropped.
Unfortunately, the above-mentioned analytic approximations for ¢(z, ) and J(0, 1) are too lengt
transparent and are not written down here. Hence, for purposes of discussion it is convenient to use th

ons cbtained hv rpnlar‘lnn R( lr) hv

simpler expressions obtained cing R(k
dpp(k
!R(ko)!eXp{i{opR(ko) *( wRi )) (k_ko)}}- (16)
a %
and then retaining only terms that contribute to v(0, f) to order Ak/kg. (For the op qne barriers considered in
Section 3, neglect of the partial derivatives of | R(k)| should be well justified.) With these approximations, one
obtains
2\ [k ( 22 (t—1 2“
J(0, 1) = {—\\ Ak(—o\ exp ——T(i | T(ky) | — 4AI R(ky) |
\m) \m )7 4 ]\
[ dpp(k)\ |t—1ty Ak)
X [sin @g( kq) +k0|R(k0)| — (Ak/ky— 0), (17)
ak ko Iy kO

where £, = | z, | /(fk,/m). The corresponding expression for the probability density at the leading edge of the
barrier is

. (2)\"? o2 t—to) s
L (0, £)] 2(:) Ak exp 14+ | R(ky) 1"+ 21 R(ky) | cos @p(ky)
\ \ 'U |_

([P0
1

AL-] (AL/L ()
ky to

| R(ko) I[ 1 R(kq) | +cos or( ko) J /o

>

(
\

L 41
Tan

(18)
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The prefactor of Ak common to J(0, ¢) and | (0, 1)1 cancels in the expression v(0, £) =J(0, 1) /] (0, )| 2
for the Bohm particle velocity at the leading edge of the barrier. Clearly, to order Ak/k,, v(0, t) is equal to the
positive stationary-state {(Ak = 0) result Uy, (0) of SCPP given by (8) plus a term proportional to Ak/k, that
changes sign at ¢ =1t,. Let us consider the usual situation in which J (0, ) changes sign only once, from plus to

minus at t=¢_. It then follows from (15) that
| R rg(0, d) < — [ dewr(0, 0y + [ deelJ(0, )| < [ deelJ(0, 1)1 (19)
TR L L

Because the first term in expression (17) for J(0, ) is positive (assuming |7T(k,)| 2%0) and the second
changes sign at ¢ = t,, it is clear that ¢, > f,. However, because of the Gaussian factor exp{ —2A*(¢ — 1,)* /151
in (17), if £, exceeds the peak time ¢, by significantly more than the characteristic width ' At =1,/2'/%A then

it follows from (19) that | R| *73(0, d) is negligibly small. Hence, an order of magnitude estimate for how small

Ak/k, must be before reaching the effective stationary-state regime, | R | ’TR(O d) < 75(0, d), is obtained by
demanding that J(0, t=t, + At) = 0 and solving (18) for Ak /k,. This gives

Ak 22| T(ky)|?

__S ; - o f . . PR PENEY

ko — 41R(ko)I{sin @g(ky) + kol R(ky) |(d@r(K)/ 0k )i}
for the regime in which reflected electrons spend a negligible amount of time within the barrier and the SCPP
result (7), (8) provides a good approximation to 7,(0, d).

(20)

3. Results

In this section, scattering by rectangular barriers V(z) = V,0(2)@(d — z) of finite height V,=2E,=
2#%k5/2m and width d is considered. For this special case, | R(ky)| = tanh(k,d), ¢@g(ky)= —m/2 and
(9pg(k)/ k), =2k, ' tanh(k,d). The fact that sin[@g(k,)]= —1 clearly shows the importance of the
(0pr(k)/ k), term in (17). If this term is replaced by zero then the leading order correction to the (positive)
Ak =0 result for v(0, t) is negative for t < ¢, and positive for ¢ > ¢,. This implies that v(0, £) > 0 for ¢ > ¢,
and hence rules out the possibility of any ‘‘to be reflected’’ electrons entering the barrier. Such electrons would
have v{0, 1) <0 ai the instant ¢ when they uitimately returned to the region z <0 and, because of the
non-intersecting property of the trajectories, could not then be followed by transmitted electrons in the ensemble
with n(ﬂ f\ > (0. At least for the qnm‘ml case under consideration, erQtnfmo the (ﬂm (kl /ﬁl{\ term in (1 7\
changes the sign of the correction term so that 0(0, t) can become negative for suff1c1ently large ¢,
corresponding to reflected electrons eventually leaving the barrier after spending a finite amount of time there.

For the opaque, rectangular barriers with V,, = 2 E, considered in this section, (20) can be replaced to a good
approximation by Ak/k, < 2!/2 exp(—2k,d). It is now clear why the accurate numerical calculations of
|R] TR(O d) carried out by Leavens and Aers [13] were unable to conhrm SCPP’s expression for TT(O d; ko)
For the parameters V, = 2E, =10 eV (k, = 1.146 A ""Yand d =5 A considered it was not feasible for them to

nnnnnnn

lJleUllll abbuldlc llUlllCllbal bUluLlUllD Uf lhc LllllD UU}JUIIUUlll Sbhludllls\al Lf\iuﬂllUll, Ubllls LllC lCdl bpdbc fULlll.h
order (in time step) method of Ref. [25], for Ak significantly less than 0.01 A~! . This value of Ak although
very small compared to &, still lies far outside the estimated range Ak < 1.7 X 10~ S A" for the stationary-state
regime given by either (20) or the above simplified expression. Fig. 1 shows |R | *r (0, d) for the region below
Ak=0.01 A™! calculated using the approximation (17) for J(0, 1) based on (16). (The corresponding results
obtained with the more accurate quadratic approximation differ by considerably less than 1 part in 10° over the

! The Gaussian factor is reduced from its peak value by a factor of e ! for [t —¢,| = Ar.
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Fig. 1. Dependence of |R| TR(O d) on Ak for an initial minimum-uncertainty-product wavefunction with centroid zy=— A /Ak

{1 =2.88) and mean wave number k, ={(2mE,)"/? /# incident on a rectangular barrier of height V, =2, =10 eV and width d =5 A
The solid curve was calculated using the quadratic approximation; (@) result for Ak = 0.01 A" based on accurate numerical solution of
the time-dependent Schrddinger equation. The value of Ak given by (20), below which the stationary-state limit is expected to be
applicable, is mdlcated by the vertical dashed line in the inset. The transmission probability |T|? varies by less than 0.6% over the range
0<Ak<001 AL
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Fig. 2. Dependence of Ak of the transmission (O) and reflection (@) contributions, [T 2‘r-r(O, d) and | R} ZTR(O, d) respectively, to the
mean dwell time 7,(0, d) (M). The initial spatial wavefunction is a minimum-uncertainty-product Gaussian with centroid z, = — A /Ak

(A= 2.35) and mean wave number k, = (2mE,)'/? /# with E, =5 eV. The scattering potential is a rectangular barrier of height V, = 2E,
and width d=2.5 A. (O), (@) and (®) denote results based on accurate numerical solution of the time dependent Schrédinger equation
while the solid and broken curves (for | R|*rg only) denote results based on the quadratic approximation and on (16) respectively. The
value of Ak below which the stationary-state limit is expected to be apdphcablc is indicated by the vertical dashed line. The transmission
probability | T |? varies by less than 9% over the range 0 < Ak < 0.08 A™!.
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range of Ak shown.) The results for | R|*rz(0, d) do eventually plummet to negligibly small value and, as
indicated in the inset the effective stationary-state regime is reasonably well delineated by (20).
Results for | R| *r¢(0, d) based on the quadratic approximation and on \10) are now compared with accurate

numerical results over an extended range of Ak by considering a d = 2.5 A bamer for which the effective
atinonary_ state reoime ic actimatad fn hn /\ I( /lr < ')1/2 pvn{—’)lr /]\ E A K X 1n 3 A 71 Thp /\ Lv (‘pnpnr‘p

nee
staticna LY TOLAIT VAL 10 Lounidiva Ny o= cngbs PriucnLT

of each of 7,(0, d), | T TT(O d)and | R| TR(O d), calculated from (2)—(6) using accurate numerical solutions
of the time-dependent Schrodinger equation [25], is shown in Fig. 2. The results for | R| *rg(0, d) based on the
quadratic approximation and on (16) are also shown * for Ak < 0.03 A~ '. They are both in good agreement, in
the region of overlap, with the accurate numerical results. Moreover, the estimate (20) for the region of
applicability of the stationary-state limit result of Spiller et al. [15] is again reasonable.

It is interesting to note that for a typical planar metal—insulator—metal barrier width d of 10 A (with
= Zbo = {0 eV as above), the rlgh[ -hand-side of (20) is 1.6 X 10 1o A -1 correspondmg to a spatlal width
2Ak for the initial Gaussian wave packet of almost 30 cm! According to the prescription adopted here,

initial
nidar

B =<

1 3 that 1 t d hoth h oa
centroid z, is located about 2.3 m from the barrier. The question that leaps to mind is whether such a

z
<

-~
T

-

single-particle wavefunction could maintain its coherence for the duration of the scattering process in the
presence of a realistic finite temperature solid-state environment.

For a more optimistic case, consider ultracold neutrons in vacuum scattering from a planar rectangular Cu
barrier of width d = 400 A and height V, = 2E,=1.65X 1077 eV [26]. For these parameters, the region of
applicability of the SCPP result for 7, is Ak/k, <0.91 X 1072, This degree of monochromaticity has been
achieved in practice for neutrons exhibiting wave function coherence over macroscopic distances.

Many of the prescriptions that have been proposed for calculating the mean transmission time 7,(z,, 2z,)
share the convenient property that 1t can be obtained directly from the corresponding stationary-state quantity
71(z,, z,, k) by integrating | (&) |* | T(k)| *r(z,, 2,; k) /27 | T |* over k from 0 to o. This is, for example,
the case for all of the prescriptions contained within the systematic projector approach of Brouard, Sala and
Muga [3] but, as shown by Leavens [13], is in general not the case for the approach based on Bohmian

mechanics. Hence, attempting to calculate 7(z;, z,) from the stationary-state result (7), (8) in the above direct
way can lead to extremely large errors if Ak is significantly outside the effective stationary-state regime.

tterine imit AX =0 is an idealizati that ha alizad
Strictly speaking, the stationary-state scattering limit Ak =0 is an idealization that can never be realized

exactly, not even in principle, because it implies complete coherence of a single-particle state over all of space
and of time from ¢ = —. Of course, what is relevant in practice is how small Ak must be before the guantity
of interest, say F(Ak), is adequately approximated by F(0) and whether or not, for such a Ak, the required
coherent single-particle state can be prepared and then survive as such for the duration of the scattering
expenment It is clear from the examples presented in this paper, which are far from extreme, that convergence
of | T %0, & and IR TR(O d) to their stationary-state values can requ1re Ak very much smaller than is the
case for either | T | or TD(U, d). Hence, the dependence of | R| TR(U, d) on Ak calculated by Leavens and
Aers [13] for the range 0.01 < Ak/k, < 0.08 could easily lead to a completely incorrect estimate for the

ctationarv-ctate limit of thic auantity
SLALIVIIAL y “OLAIL IRRIL UL LIS Yualitity .

In the Bohm picture, transmitted particles originate in the leading |T'|® part of the wave packet and are
delayed relative to the corresponding free particles with the same initial positions z'® so that this part of the
packet can evolve into the entire transmitted packet. In the stationary-state limit, the average time that these

% Over this range of Ak, the quadratic approximation for J (0 1) leads 10 a transmission probability |T | that agrees to better than 1%

with the numericaily exact one cbtained by integrating | ¢{k)}* | T(k)1? /2 over positive £.
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particles are delayed in the region z < 0 in front of the barrier diverges and, moreover, for an opaque barrier is
very large relative to the (infinite) mean arrival time at z =0 of the corresponding free particles. It seems
somewhat arbitrary to ignore this important perturbation of the particle motion by the barrier and to focus only
on the mean transmission time for the barrier region. Neither of these quantities is directly measurable in general
because of the position—momentum uncertainty relation. On the other hand, the mean arrival time of transmitted
particles at a point z > d on the far side of the barrier is experimentally observable in principle but is of interest
only for finite initial wave packets because it necessarily diverges in the stationary-state limit.

References

[1] E.H. Hauge and J.A. Stgvneng, Rev. Mod. Phys. 61 (1989) 917.
[2] R. Landauer and Th. Martin, Rev. Mod. Phys. 66 (1994) 217.
[3] S. Brouard, R. Sala and J.G. Muga, Phys. Rev. A 47 (1994) 4312.
[4] A.M. Steinberg, Phys. Rev. Lett. 74 (1995) 2405.
[5] D. Bohm, Phys. Rev. 85 (1952) 166, 180.
[6] D. Bohm, B.J. Hiley and P.N. Kaloyerou, Phys. Rep. 144 (1987) 323.
[7] J.S. Bell, Speakable and unspeakable in quantum mechanics (Cambridge Univ. Press, Cambridge, 1987).
[8] D. Bohm and B.J. Hiley, The undivided universe: an ontological interpretation of quantum mechanics (Routledge, London, 1993).
[9] P.R. Holland, The quantum theory of motion (Cambridge Univ. Press, Cambridge, 1993).
[10] D. Diirr, S. Goldstein and N. Zanghi, J. Stat. Phys. 67 (1992) 843.
[11] A. Valentini, Phys. Lett. A 156 (1991) 5; 158 (1991) 1.
[12] D.Z. Albert, Sci. Am. 270 (May 1994) 58.
[13] C.R. Leavens and G.C. Aers, in: Scanning tunneling microscopy 111, eds. R. Wiesendanger and H.-J. Giintherodt (Springer, Berlin
1993) pp. 105-140; C.R. Leavens, Phys. Lett. A 197 (1995) 88.
[14] W. Jaworski and D.M. Wardlaw, Phys. Rev. A 37 (1987) 2843.
[15] T.P. Spiller, T.D. Clark, R.J. Prance and H. Prance, Europhys. Lett. 12 (1990) 1.
[16] 1.0. Hirschfelder, A.C. Christoph and W.E. Palke, J. Chem. Phys. 61 (1975) 5435.
[17] M.A. de Moura and D.F. deAlbuquerque, Solid State Commun. 74 (1990) 353.
[18] A.N. Khondker and M.A. Alam, Phys. Rev. B 45 (1992) 8516.
[19] I.R. Barker, Semicond. Sci, Technol. 9 (1994) 911; in: Quantum transport in ultrasmall devices, ed. D.K. Ferry (Plenum, New York
1995) pp.171-180.
[20] Hua Wu and D.W.L. Sprung, Phys. Lett. A 183 (1993) 413; 196 (1994) 229.
[21] 1.R. Zhou and D.K. Ferry, IEEE Trans. Electron Dev. 39 (1992) 473, 1793; 40 (1993) 421.
[22] M. Cahay and S. Bandyopadhyay, Adv. Electron. Electron Phys. 89 (1994) 93.
[23] C.R. Leavens and G.C. Aers, in: Scanning tunneling microscopy and related methods, eds. R.J. Behm, N. Garcia and H. Rohrer
(Kluwer, Dordrecht 1990) pp. 59-76.
[24] M. Biittiker, Phys. Rev. B 27 (1983) 6178.
[25] H. de Raedt, Comput. Phys. Rep. 7 (1987) 1.
[26] A. Steyerl, W. Drexel, S.S. Malik and E. Gutsmiedl, Physica B 151 (1988) 36.



