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Abstract 

For an initial minimum-uncertainty-product Gaussian wave packet incident on an opaque barrier we investigate how 

small its spread Ak in wave number must be in order that the Bohm trajectory mean transmission time be well approximated 

by the stationary-state (Ak = 0) expression of Spiller, Clark, Prance and Prance. 

1. Introduction 

Many different theoretical approaches (see Refs. [l-4], and references therein) have been applied to the 

calculation of various characteristic times associated with a particle interacting with a potential barrier. This 

Letter ties up a loose end associated with the approach based on Bohmian mechanics. 

Consider an ensemble of a very large number of identically prepared single-particle one-dimensional 

scattering experiments. In each, a Schriidinger electron with the same initial wavefunction $(z, 01, normalized 

to unity, is incident from the left on a static potential barrier which, for simplicity, is assumed to be zero outside 

the range 0 < z < d. The mean transmission time T~(z~, zZ> is defined as the average time spent in the region 

z1 Q z < z2 subsequent to t = 0 by those electrons that are ultimately transmitted; the mean reflection time 

~~(z], z,> is the corresponding quantity for those that are reflected. Finally, the mean dwell time T~(z~, z2) is 

the average time spent between z1 and z2 irrespective of whether the scattered particle is transmitted or 

reflected. It is assumed that the probability of the particle being either absorbed or trapped for an infinitely long 

time by the scattering potential is zero so that the transmission and reflection probabilities, [ T 1 2 and 1 R 1 2 

respectively, sum to one. It is also assumed that the initial centroid z,, = (Cc, * (2, O)z$( z, 0)) of the wave 

packet is chosen so that the integrated probability density 1 $(z, 0) I * from z = Min[ zl, 01 to 00 is negligibly 

small compared to 1 T 1’ (by a factor of lo-” in the calculations presented here). 

According to Bohmian mechanics [5-121 an electron is an actual particle the motion of which is causally 
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determined by the wavefunction +(z, t) so that it has, at each instant t of time, a well-defined position z(t) and 

velocity 

where J(z, t) = (h/m) lm[ I+!J *(z, t)@(z, t)/az] is the probability current density. The electron’s trajectory 

z(z(‘), t) is uniquely specified by I,!J(z, 0) and its initial position z (‘) = z(z(‘), 0). The latter is unknown but 

statistically distributed according to P(z”‘) = I t,b( z(O) 0) I*. It readily follows [13] that , 

ro(zi, ~2) = I~12r,(z,,z~) + IR12&~> zl>, (2) 

with 

ro(z1, 22) = ~wdfjz2dzi~(z, t)12=/omdtt[J(z2, t)-J(q, t)], 

i;di&(;.. t> -J,(z,, t)], TT(Z1, 22) = ITl2 o 

(3) 

(44 

5dZl~ 3) = IR12 o i/Id+,(z2, t) -J,(z,, t)]. W) 

The first expression in (3) is well known, the second follows upon multiplying the continuity equation 

8 I JJ( z, t) I */at + U(z, t)/dz = 0 by t and then integrating over z from z1 to z2 and over t from 0 to 30 [14]. 

The components of J(z, t) associated with transmission and reflection are given by 

J,(z, t) =J(z, t>o[z-z,(t)], (5a) 

J,(z, t) =J(z, t)O[zc(t) -z], (5b) 

where z (t) = z( z(O) t) the bifurcation line separating transmitted from reflected trajectories, is defined 

implicit]; by 
C) 7 

(O(z) is the unit step function equal to 0 for z < 0 and 1 for z > 0). 

Rather than consider the time-evolution of an incident wave packet of finite spatial extent, Spiller, Clark, 

Prance and Prance (SCPP) [15] applied Bohmian mechanics to the stationary-state scattering problem. For 

“incident” electrons of wave number k and energ 
1 

E = fi2k2/2m they identified the mean transmission time, 

assuming that the transmission probability I Z’(k) I is non-zero, with the quantity 

TT(Z1, z*; 

where u,(z) is the stationary-state particle velocity 

I+k(z)i2 = I+k(‘)I’ ’ 

(7) 

(8) 

Here, $k( z) exp( -iEt/fi) and Jk( z) = Jk (independent of z) are the stationary-state wavefunction and 

probability current density respectively (the wavefunction is now normalized SO that the incident flux J,,, is 

hk/m). SCPP applied (7), (8) to the special case of a rectangular barrier V(z) = V,@(z)@(d -z). Twenty 

years ago Hirschfelder et al. [16] also considered the quantity on the right-hand-side of (7) from the point of 
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view of Bohmian mechanics but regarded it as having “little physical significance”. On the other hand, many 

authors [17-221 have used (7), (8) to study the dynamics of electronic transport in devices, a few apparently not 

aware of the connection with Bohm’s theory. 

If the stationary-state limit of Eq. (3) is derived [23] taking into account the different prescriptions for 

normalization, the well-known result [24] 

for the mean dwell time is obtained. Comparing (9) with (7) and (8) it follows immediately that 

Tr(Z17 z 2; k) = IT(k)l~2r,(Z,, z2; k). 

Application of (2) then leads to the surprising conclusion 

(IO) 

ra( zr, z2; k) = 0 (O< IT(k)]%). (11) 

That reflected electrons never enter the region z > zr with z1 arbitrary, not even when the transmission 

probability is exceedingly small (but finite), also follows from (8) because u,(z) is never negative (k > 0 for 

electrons incident from the left). 

Leavens and Aers [13] expressed reservations about determining the temporal characteristics of a scattering 

process by studying only the stationary-state (Ak = 0) case. They attempted to test the validity of (7), (8) via 

(11) by carrying out accurate numerical calculations of ~~(0, d) for the special ctse of Gaussian wave packets 

of average wave number k, _ 1 A-’ and spread Ak = 0.08, 0.04, 0.02 and 0.01 A-’ incident on a rectangular 

barrier of height V,, = 2 E, = 2h2kfj/2m = 10 eV and width d = 5 A. The results were inconclusive: even 

though the calculated values for I R 1 27,(0, d) can convincingly be extrapolated linearly to a value at Ak = 0 

that is very close to ~~(0, d; k,), apparently disproving (ll), they actually do not rule out the possibility that 

I R 1 27R(0, d) eventually plummets to zero for sufficiently small A k. In this paper it is shown that the latter 

behaviour is :n fact the correct one. In Section 2 a method is discussed for deriving approximate, closed form 

expressions for $(O, t> and J(0, t) that are accurate in the regime Ak/k, very much less than unity. Also, a 

simple expression is suggested for estimating how small Ak/k, must be before the stationary-state regime, 

defined here by the condition I R I 2 ~~(0, d) +z ~~(0, d), is effectively reached. In Section 3 calculated results 

for the dependence of 1 R I 27,(0, d) on A k as A k approaches zero are presented. They confirm the correctness 

(within Bohmian mechanics) of the expression for the mean transmission time in the stationary-state limit given 

by Spiller et al. [15]. Concluding remarks are made in Section 4. 

2. A method for approaching the stationary-state limit 

The approach to the stationary-state limit Ak = 0 is made here assuming that the Fourier transform 4(k) of 

the incident component $r(z, t = 0) of the initial wavefunction is Gaussian, i.e. 

i(k-k,,)q, , 1 (12) 

where k, is the centroid of I c#4k) I ’ and z0 that of I $,(z, 0) I 2. In the calculations presented below, z0 is 

chosen so that the inteFra1 of I I/I&Z, 0) I 2 over the region 0 <z < a is equal to 10m4 I T I 2, i.e. h = -z,Ak 

= ;N-‘(l- 10-4]T] > h w ere N- ‘(x) is the inverse of the normal distribution function. The dependence of A 

on Ak as Ak approaches zero is negligible (A is between 2 and 3 for the two examples considered in the next 

section). With the above choice for 4(k) the time-evolved incident component 

$,cz, t) = /:mg+(k) exp(ikz) exP(-ink2t/2m) (z<O) (13) 
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can be evaluated analytically in closed form but the reflected component 

I++~(z, t) = l_lg+(k)H(k) exp( -ikz) exp( -i&‘t/2m) (z<O) (14) 

in general cannot. In (14), R(k) = 1 R(k) 1 exp[i q,(k)] = exp[ln 1 R(k) 1 + i cp,(k)] is the reflection probability 

amplitude. Now, in the approach Ak + 0 to the stationary-state limit (Ak = O), it should ultimately be an 

excellent approximation to expand In I R(k) I and q,(k) in the integrand of (14) about the peak wave number 

k = k, of I 4(k) I ’ to order (k - k,)2 (hereafter referred to as the quadratic approximation). Then (14) becomes 

a Gaussian integral which can be evaluated analytically. Using the resulting expressions for I/J,(z, t) and 

I,!J,Jz, t) in @(z < 0, t) = I,!+(z, t) + +!+(z, t), the corresponding analytic approximation to the probability 

current density J(z, t) = (h/m) Im[ $ *(z, t)&/~(z, t>/~?zl for z < 0 follows. Now consider the usual case in 

which there are no reentrant transmitted Bohm trajectories through the leading edge of the barrier at z = 0 (this 

is certainly the case for the two systems studied in Section 3). Since Bohm trajectories do not intersect each 

other [9,13], there is then a time t,, defined implicitly by z,(tTR) = 0 such that only “to be transmitted” 

electrons enter the barrier for t < t,, and only “to be reflected” ones for t > fTR. Then J(0, t>, =J(O, t)@(f 
- tTR) and it follows from (4b) that 

1 R 1 2~R(0, d) 6 1 R 1 2~R(0, ~0) = - lrn dt tJ(0, t). (15) 
fTR 

In the next section, where the behaviour of I R 1 2~R(0, m) as A k + 0 is studied, there are no reentrant 

trajectories through z = d for the two barriers considered. Hence ~~(0, d) is equal to ~~(0, m) and the 

distinction is dropped. 

Unfortunately, the above-mentioned analytic approximations for (cI(z, t> and J(0, t> are too lengthy to be 

transparent and are not written down here. Hence, for purposes of discussion it is convenient to use the much 

simpler expressions obtained by replacing R(k) by 

I R&J I exp 1 cpR(ko) + (-[ ( “;i”‘ikyo)]). (16) 

and then retaining only terms that contribute to ~(0, f) to order Ak/k,. (For the opaque barriers considered in 

Section 3, neglect of the partial derivatives of 1 R(k) I should be well justified.) With these approximations, one 

obtains 

X sin qR( k,) + k, I R( k,) I ( ~)ko]~~} (Ak/ko+O), (17) 

where r. = I z. I /(hk,/m). The corresponding expression for the probability density at the leading edge of the 

barrier is 

I$(% r>12= ; ( 2)“2Akexp(2P(~~ro)*~[l+ IR(ko)12+2)R(ko)lcos pR(ko) 

I+cos c,oR(ko),(~)~“~Ak] (Ak/kohO)- 

(18) 
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The prefactor of Ak common to J(0, t) and ] $(O, t) I ’ cancels in the expression ~(0, t) = J(0, t)/ I $(O, t) I ’ 

for the Bohm particle velocity at the leading edge of the barrier. Clearly, to order Ak/k,, ~(0, t) is equal to the 

positive stationary-state (Ak = 0) result ~~$0) of SCPP given by (8) plus a term proportional to Ak/k, that 

changes sign at t = t,. Let us consider the usual situation in which J(0, t) changes sign only once, from plus to 

minus at t = ti. It then follows from (15) that 

I R I*T~(O, d) < - sr’ dt rJ(0, t) + /= dt t 1 J(0, t) 1 =G /I dt t 1 J(0, t) I. (19) 
f TR t* ** 

Because the first term in expression (17) for J(0, t> is positive (assuming I T(k,) I 2 # 0) and the second 

changes sign at t = t,, it is clear that t * > to. However, because of the Gaussian factor exp[ - 2h*(t - to>*/t(f] 

in (17), if t f exceeds the peak time t, by significantly more than the characteristic width ’ At = t,/2”*h then 

it follows from (19) that I R I 2~R(0, d) is negligibly small. Hence, an order of magnitude estimate for how small 

Ak/k, must be before reaching the effective stationary-state regime, I R I “~~(0, d) K ~~(0, d), is obtained by 

demanding that J(0, t = t, + At) = 0 and solving (18) for Ak/k,,. This gives 

Ak 2”’ I T( k,) I 2 

k’ 4lR(k,)l{sin (PR(ko)+k,IR(k,)l(acp,(k)/ak)ko} 0 

(20) 

for the regime in which reflected electrons spend a negligible amount of time within the barrier and the SCPP 

result (7) (8) provides a good approximation to ~~(0, d). 

3. Results 

In this section, scattering by rectangular barriers V(z) = V,O(z)O(d - z) of finite height V, = 2E, = 

2fi2ki/2m and width d is considered. For this special case, I R(k,) I = tanh(k,d), cp,(k,) = - 7r/2 and 

( &p,(k)/ak),,l = 2k;’ tanh(k,d). The fact that sin[ cp,(k,)] = - 1 clearly shows the importance of the 

(&p,(k)/ak),o term in (17). If this term is replaced by zero then the leading order correction to the (positive) 

A k = 0 result for ~(0, t) is negative for t < to and positive for t > t,. This implies that ~(0, t) > 0 for t > to 

and hence rules out the possibility of any “to be reflected” electrons entering the barrier. Such electrons would 

have ~(0, t) < 0 at the instant t when they ultimately returned to the region z < 0 and, because of the 

non-intersecting property of the trajectories, could not then be followed by transmitted electrons in the ensemble 

with ~(0, t) > 0. At least for the special case under consideration, reinstating the (i%p,(k)/Jk),o term in (17) 

changes the sign of the correction term so that ~(0, t) can become negative for sufficiently large t, 

corresponding to reflected electrons eventually leaving the barrier after spending a finite amount of time there. 

For the opaque, rectangular barriers with V, = 2E, considered in this section, (20) can be replaced to a good 

approximation by Ak/k, < 2’/* exp( - 2k,d). It is now clear why the accurate numerical calculations of 

I R I *T,(O, d) carried out by Leavens and Aers [13] were unable to confirm SCPP’s expression for T,(O, d; k,). 

For the parameters V, = 2E, = 10 eV (k, = 1.146 A-‘) and d = 5 A considered it was not feasible for them to 

perform accurate numerical solutions of the time-dependent Schrodinger equa$on, using the real-space fourth 

order (in time step) method of Ref. [25], for A k significantly less than 0.01 A-‘. This value of A k although 

very small compared to k, still lies far outside the estimated range Ak < 1.7 X 10m5 A-’ for the stationary-state 

regime given by either (20) or the above simplified expression. Fig. 1 shows I R 1 2~R(0, d) for the region below 

Ak = 0.01 A-’ calculated using the approximation (17) for J(0, t> based on (16). (The corresponding results 

obtained with the more accurate quadratic approximation differ by considerably less than 1 part in lo3 over the 

’ The Gaussian factor is reduced from its peak value by a factor of em ’ for 1 t - to 1 = At. 
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Fig. 1. Dependence of 1 RI*T,(O, d) on Ak for an initial minimum-uncertainty-product wavefunction with centroid zu = - h/Ak 

(A = 2.88) and mean wave number k,, = (2mEa)‘/*/fi incident on a rectangular barrier of height V, = 2E, = 10 eV and width d = 5 A,. 

The solid curve was calculated using the quadratic approximation; (0) result for A k = 0.01 A- ’ based on accurate numerical solution of 

the time-dependent Schrijdinger equation. The value of Ak given by (201, below which the stationary-state limit is expected to be 

applicable, is indicated by the vertical dashed line in the inset. The transmission probability 1 T 1’ varies by less than 0.6% over the range 

0 Q Ak < 0.01 A-‘. 
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Fig. 2. Dependence of Ak of the transmission (0) and reflection (@) contributions, I T I *r,(O, d) and I RI *r,(O, d) respectively, to the 

mean dwell time ~~(0, d) ( ! ). The initial spatial wavefunction is a minimum-uncertainty-product Gaussian with centroid za = - A/Ak 

(A = 2.35) and mean wave number k, = (ZmE,)‘/*/ A with E, = 5 eV. The scattering potential is a rectangular barrier of height V, = 2Ea 

and width d = 2.5 .& CO), (0) and ( ! ) denote results based on accurate numerical solution of the time dependent Schriidinger equation 

while the solid and broken curves (for I R ( *TV only) denote results based on the quadratic approximation and on (16) respectively. The 

value of Ak below which the stationary-state limit is expected to be applicable is indicated by the vertical dashed line. The transmission 

probability I T I ’ varies by less than 9% over the range 0 Q A k < 0.08 A-‘. 
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range of Ak shown.) The results for 1 R I ‘Q-JO, d) do eventually plummet to negligibly small value and, as 

indicated in the inset, the effective stationary-state regime is reasonably well delineated by (20). 

Results for 1 R ) *~,(0, d) based on the quadratic approximation and on (16) are now compared with accurate 

numerical results over an extended range of Ak by considering a d = 2.5 A barrier for which the effective 

stationary-state regime is estimated to be Ak/k, < 2l/* exp(-2k,d) = 4.6 x 10P3 A-‘. The Ak dependence 

of each of ~~(0, d), 1 T 1 27,(0, d) and 1 R I 27,(0, d), calculated from (2)-(6) using accurate numerical solutions 

of the time-dependent Schrbdinger equation [25], is shown in Fig. 2. The results for 1 R I *7,JO, d) based on the 

quadratic approximation and on (16) are also shown * for Ak < 0.03 A-‘. They are both in good agreement, in 

the region of overlap, with the accurate numerical results. Moreover, the estimate (20) for the region of 

applicability of the stationary-state limit result of Spiller et al. [15] is again reasonable. 

It is interesting to note that for a typical planar metal-insulator-metal barrier width d of 10 A (with 

V,, = 2E, = 10 eV as above), the right-hand-side of (20) is 1.6 X lo-” A-’ corresponding to a spatial width 

AZ = 1/2Ak for the initial Gaussian wave packet of almost 30 cm! According to the prescription adopted here, 

the initial centroid z. is located about 2.3 m from the barrier. The question that leaps to mind is whether such a 

single-particle wavefunction could maintain its coherence for the duration of the scattering process in the 

presence of a realistic finite temperature solid-state environment. 

For a more optimistic c$se, consider ultracold neutrons in vacuum scattering from a planar rectangular Cu 

barrier of width d = 400 A and height V, = 2E, = 1.65 X lo-’ eV [26]. For these parameters, the region of 

applicability of the SCPP result for 71. is Ak/k, < 0.91 X lo- *. This degree of monochromaticity has been 

achieved in practice for neutrons exhibiting wave function coherence over macroscopic distances. 

4. Concluding remarks 

Many of the prescriptions that have been proposed for calculating the mean transmission time 7-Jz1, z,) 

share the convenient property that it can be obtained directly from the corresponding stationary-state quantity 

TT(Z,, 22, k) by integrating I 4(k) I * I T(k) I ‘TJz~, z2; k)/2r I T I ’ over k from 0 to ~0. This is, for example, 

the case for all of the prescriptions contained within the systematic projector approach of Brouard, Sala and 

Muga [3] but, as shown by Leavens [13], is in general not the case for the approach based on Bohmian 

mechanics. Hence, attempting to calculate T~( z,, z2) from the stationary-state result (7), (8) in the above direct 

way can lead to extremely large errors if Ak is significantly outside the effective stationary-state regime. 

Strictly speaking, the stationary-state scattering limit Ak = 0 is an idealization that can never be realized 

exactly, not even in principle, because it implies complete coherence of a single-particle state over all of space 

and of time from t = - ~0. Of course, what is relevant in practice is how small Ak must be before the quantity 

of interest, say F(Ak), is adequately approximated by F(0) and whether or not, for such a Ak, the required 

coherent single-particle state can be prepared and then survive as such for the duration of the scattering 

experiment. It is clear from the examples presented in this paper, which are far from extreme, that convergence 

of I T I *~,(0, d) and I R I *7JO, d) to their stationary-state values can require Ak very much smaller than is the 

case for either I T I 2 or ~~(0, d). Hence, the dependence of I R I *~~(0, d) on Ak calculated by Leavens and 

Aers [13] for the range 0.01 < Ak/k, Q 0.08 could easily lead to a completely incorrect estimate for the 

stationary-state limit of this quantity. 

In the Bohm picture, transmitted particles originate in the leading I T I * part of the wave packet and are 

delayed relative to the corresponding free particles with the same initial positions z(O) so that this part of the 

packet can evolve into the entire transmitted packet. In the stationary-state limit, the average time that these 

z 
Over this range of Ak, the quadratic approximation for J(0, t) leads to a transmission probability 1 T I* that agrees to better than 1% 

with the numerically exact one obtained by integrating 1 Cpfk) I* I T(k) 1*/27r over positive k. 
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particles are delayed in the region z < 0 in front of the barrier diverges and, moreover, for an opaque barrier is 

very large relative to the (infinite) mean arrival time at z = 0 of the corresponding free particles. It seems 

somewhat arbitrary to ignore this important perturbation of the particle motion by the barrier and to focus only 

on the mean transmission time for the barrier region. Neither of these quantities is directly measurable in general 

because of the position-momentum uncertainty relation. On the other hand, the mean arrival time of transmitted 

particles at a point z > d on the far side of the barrier is experimentally observable in principle but is of interest 

only for finite initial wave packets because it necessarily diverges in the stationary-state limit. 
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