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Numerical Investigation of Shot Noise between the Ballistic
and the Diffusive Regime
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Abstract. We investigate shot noise suppression in several mesoscopic structures by means of a numerical ap-
proach based on the computation of the transmission matrix with the recursive Green’s function method. We retrieve
the “universal” values of the suppression factor obtained with random matrix theory for chaotic cavities and diffusive
conductors. We then extend the investigation to more complex structures, such as multiple cascaded cavities and
partially diffusive systems, and discuss the consequences on the shot noise suppression factor. Finally, we analyze
the behavior of shot noise in an electron waveguide containing a large number of scatterers as the spatial position
of the scatterers is changed from a regular array to a random distribution.
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1. Introduction

During the last few years remarkable theoretical
(Lesovik 1989, Büttiker 1990, Beenakker and Büttiker
1992, Jalabert, Pichard and Beenakker 1994, González
et al. 1998) and experimental (Kumar et al. 1996,
Liefrink et al. 1994, Oberholzer et al. 2001) results
have drawn significant attention to the issue of shot
noise suppression in mesoscopic conductors. The most
recent theoretical work in this field has been based
on the random matrix approach (RMT), which has al-
lowed prediction of the shot noise suppression down
to 1/3 of the full shot value in diffusive conductors
(Beenakker and Büttiker 1992) and of the suppres-
sion down to 1/4 in chaotic ballistic cavities (Jalabert,
Pichard and Beenakker 1994). The RMT approach is
quite powerful, but it cannot be easily extended to
generic geometries; we have been interested in expand-
ing the investigation of shot noise suppression to arbi-
trary mesoscopic structures, and, to this purpose, we
have developed a numerical method based on an opti-
mized recursive Green’s function technique. With this
method, we can treat generic structures, with the inclu-
sion of the effects of atomistic distributions of dopants
leading to a diffusive regime, and we can handle situ-
ations with a few hundreds of propagating modes. It is

possible to show that the “universal” suppression fac-
tors 1/3 and 1/4 are easily retrieved, respectively, for
a conductor with a large enough density of elastic scat-
terers and for a structure with a symmetric cavity with
small enough input and output apertures. We study shot
noise in nanostructures containing single and multiple
cascaded cavities, noticing that the shot noise suppres-
sion is substantially independent of the number of cav-
ities, and then take into consideration the case in which
one of the cavities is filled with randomly distributed
scatterers, arguing, on the basis of a simple circuit anal-
ogy, why the shot noise reduction factor becomes the
same as for purely diffusive conductors. Finally, we in-
vestigate the transition that shot noise suppression in
an electron waveguide containing a large number of
scatterers undergoes as we move from a regular spatial
distribution of such scatterers to a random distribution.

2. Model

Although our approach is general and can be applied
to an arbitrary potential landscape, we consider, for
the sake of computational simplicity, a device geom-
etry defined by hard walls, with obstacles and bound-
aries characterized by right angles. The transmission
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matrix t , whose elements represent the transmission
coefficient from each input mode to each output mode,
is computed by means of the recursive Green’s func-
tion approach (Sols et al. 1989, Macucci, Galick and
Ravaioli 1995), which has been specifically optimized
to guarantee sufficient numerical precision when han-
dling up to a thousand of the slices characterized by
constant transverse potential into which the structure
has to be subdivided for the calculations that we will be
presenting. Once t has been obtained, we compute the
transmission coefficients in a representation in which
the transmission matrix is diagonal, multiplying t by its
hermitian conjugate t† and finding the eigenvalues Ti

of t t†. Following Lesovik (1989) the shot noise power
density can be written as

SI = 4
q2

h
|qV |

∑

i

Ti (1 − Ti ), (1)

where h is the Planck constant, q is the electron charge
and V is the applied voltage. Since the power spectral
density of full shot noise is

SI f = 2qI = 2q
2q2

h
|V |

∑

i

Ti , (2)

we can conclude that the Fano factor γ , i.e. the ratio of
the actual shot noise power spectral density to the full
shot noise, is given by

γ =
∑

i Ti (1 − Ti )∑
i Ti

, (3)

which can be immediately evaluated once the Ti coef-
ficients are known.

3. Numerical Results

We have first investigated the shot noise suppres-
sion in chaotic cavities (defined by apertures that are
much narrower than the cavities themselves), retrieving
(Macucci, Iannaccone and Pellegrini 2001) the value of
1/4 for the Fano factor, as predicted by Jalabert et al.
(1994), if the number of propagating modes is larger
than about 20. We have then studied a more complex
structure, made up of two cascaded cavities, each 5 µm
long, created in an electron waveguide with a width of
5 µm by delimiting them with diaphragms 250 nm
thick and 1 µm wide, as shown in the inset of Fig. 1.
We report the Fano factor for this structure in Fig. 1 as

Figure 1. Fano factor for two cascaded chaotic cavities as a func-
tion of the Fermi energy, expressed in units of the threshold E0 for
propagation of the lowest mode in the empty waveguide. The inset
contains a graphic representation of the confinement potential.

a function of the Fermi energy (expressed as a multi-
ple of the threshold energy E0 for propagation of the
lowest mode in the empty waveguide), and notice that
the average value is around 0.25, as in the case of a
single cavity. The structures we are studying are rel-
atively large, in order to allow propagation of a suf-
ficiently large number of modes, to be in the regime
in which the “universal” suppression factors are mean-
ingful (Beenakker and Büttiker 1992).

We have also computed the Fano factor for three
cascaded cavities, obtaining results that, although with
larger fluctuations, are almost coincident with those
for two cavities. The same happens for larger numbers
of cascaded cavities, and even if we include interme-
diate diaphragms with different widths, as long as the
rightmost and the leftmost apertures are symmetric. We
notice that the actual shot noise suppression factor fluc-
tuates rather widely as a function of the Fermi energy
for all of the numerical results, and equals the asymp-
totic value predicted by random matrix theory only on
the average.

A qualitatively different behavior is however ob-
served if at least one of the cascaded cavities is filled
with randomly distributed obstacles, which lead to a
complex scattering pattern and to transport in the dif-
fusive regime, i.e. a condition in which the elastic mean
free path is much smaller than the device dimensions.
In Fig. 2 we report the noise power spectral density as a
function of the Fermi energy for two cascaded cavities,
each with a length of 5 µm and a width of 5 µm, delim-
ited by constrictions that are 1 µm wide and 0.25 µm
long. Within the cavity region we have included 200
randomly distributed hard-wall 56.2 nm × 50 nm ob-
stacles. Although the cavity is delimited by symmetric
apertures, the Fano factor moves up to slightly less
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Figure 2. Fano factor for two cascaded chaotic cavities, one of
which is filled with randomly distributed scatterers, as a function of
the Fermi energy, expressed in units of the threshold E0 for propaga-
tion of the lowest mode in the empty waveguide. The inset contains
a graphic representation of the confinement potential.

than 1/3, significantly departing from the 1/4 result
and reaching a typically diffusive behavior. The inset
in the figure shows the device geometry, with the posi-
tion of the obstacles.

An extremely simplified interpretation of this behav-
ior can be derived from a circuit analogy. Let us con-
sider a series of two current noise sources, with power
spectral densities SI1 and SI2 , providing contributions
of the same order of magnitude (as they are both of shot
origin and share the same average current) and associ-
ated with different resistances R1 and R2, each of which
is in parallel with the corresponding current noise
source. If we want to determine the current noise power
spectral density SIout they produce on an external load
R, we obtain SIout = (SI1 R2

1 + SI2 R2
2)/(R1 + R2 + R)2,

therefore the predominant contribution is the one as-
sociated with the larger resistance, which in our case
corresponds to the diffusive region. Clearly, this is not
an exact analogy, because the electron waveguide sec-
tions do not rigorously correspond to circuit elements
in series, although the presence of a diffusive region
has a strongly decoupling action between the different
sections.

Another interesting aspect of the transition from bal-
listic to diffusive transport can be observed by applying
our computational method to a quantum wire contain-
ing scatterers and looking at the dependence of the shot
noise suppression factor on the position of such scatter-
ers. If we have a regular pattern of scatterers, arranged
in a square lattice, it has been shown (Macucci in press)
that, at least for relatively small numbers of scatterers,
shot noise is suppressed by a factor increasing with the
portion of the waveguide surface occupied by the scat-
terers and saturating around 0.16. On the other hand, we

Figure 3. Fano factor for an electron waveguide filled with a square
lattice of scatterers, as a function of the Fermi energy, expressed in
units of the threshold E0 for propagation of the lowest mode in the
empty waveguide. The inset contains a graphic representation of the
confinement potential.

know that, for a large number of randomly positioned
scatterers, shot noise is suppressed by the universal fac-
tor 1/3 (Macucci, Iannaccone and Pellegrini 1999). We
have performed a calculation of the Fano factor for a
section of electron waveguide containing a very large
number of square obstacles (570), each with a side 200
times smaller than the waveguide width, for two cases
differing for the spatial arrangement of the scatterers,
but not for their density. In one case we have a regu-
lar square lattice, with 19 rows and 30 columns, in the
other case we generate the coordinates of the scatterers
as randomly distributed variables over the same region
of space. Results are shown in Fig. 3 (for the square lat-
tice) and in Fig. 4 (for the random case), in which we
report the Fano factor as a function of the Fermi energy,
expressed as a multiple of the energy for propagation of
the lowest mode in the empty waveguide. Each figure

Figure 4. Fano factor for an electron waveguide filled with ran-
domly distributed scatterers, as a function of the Fermi energy, ex-
pressed in units of the threshold E0 for propagation of the lowest
mode in the empty waveguide. The inset contains a graphic repre-
sentation of the confinement potential.
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contains an inset showing the position of the obstacles
within the waveguide. It is apparent that, although the
density of scatterers is the same in the two cases, the
noise suppression sharply differs: for the regular lattice
we observe an average value of the Fano factor around
0.1, which, considering the relatively low scatterer-to-
waveguide area ratio, is in good agreement with the
results obtained in Macucci (in press); when, instead,
scatterers are distributed randomly, the 1/3 “univer-
sal” suppression factor predicted by random matrix
theory (Beenakker and Büttiker 1992) is immediately
retrieved.

4. Conclusions

We have investigated shot noise suppression in meso-
scopic conductors in a regime that varies from ballis-
tic, with the inclusion of simple scattering geometries,
to diffusive, observing how the shot noise suppression
factor varies and fluctuates around the “universal” val-
ues 1/4 and 1/3 for the chaotic cavities and for the
diffusive regime, respectively. We have also observed
that the 1/4 suppression factor is not influenced signif-
icantly by the characteristics and number of cascaded
chaotic cavities, as long as the leftmost and rightmost
apertures are of the same width. Furthermore, we have
shown that the presence of a diffusive region within
an electron waveguide leads to a Fano factor around
1/3 with little influence from the other geometrical de-
tails of the structure, and we have justified this result
on the basis of a simple circuit analogy. Finally, we
have investigated the change in the shot noise suppres-
sion factor in an electron waveguide, as the position of
a large number of scatterers is varied from regular to
random without varying their spatial density: a transi-
tion is observed from transport in a periodic structure to

the diffusive regime. Further work is planned to better
understand this transition as the scatterer arrangement
is gradually changed from regular to random and as a
function of the actual statistical distributions used for
the scatterer coordinates.
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