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Modeling of Shallow Quantum Point Contacts Defined on AlGaAs/GaAs
Heterostructures: The Effect of Surface States

G. FIORI, G. IANNACCONE AND M. MACUCCI
Dipartimento di Ingegneria dell’Informazione, Università degli studi di Pisa, Via Diotisalvi 2, 56122, Pisa, Italy

Abstract. We have developed a program for the simulation of devices defined by electrostatic confinement on the
two-dimensional electron gas in AlGaAs/GaAs heterostructures. Our code is based on the self-consistent solution
of the Poisson-Schrödinger equation in three dimensions, and can take into account the effects of surface states at
the semiconductor-air interface and of discrete impurities in the doped layer. We show results from the simulation
of quantum point contacts with different lithographic gaps, whose conductance is computed by means of a code
based on the recursive Green’s functions formalism.

Keywords: heterostructures, mesoscopic devices, surface states

1. Introduction

The confining potential and the charge density in meso-
scopic devices defined by electrostatic confinement in a
shallow two-dimensional electron gas (2DEG) strongly
depend on the properties of the surface, i.e., on the den-
sity of states and the semiconductor-air interface. For
this reason, the accurate simulation of such devices re-
quires that proper boundary conditions be enforced at
the exposed semiconductor surface (Chen and Porod
1993, Davies and Larkin).

As shown in Iannaccone et al. (2000), the assump-
tion of Fermi level pinning at the exposed surface, as
well as the assumption of a constant electric field at the
semiconductor-air interface, corresponding to a frozen
surface charge, are not adequate to achieve results in
quantitative agreement with experiments. In particu-
lar, for the case of quantum point contacts defined by
split gates on an AlGaAs/GaAs heterostructure, these
assumptions provide reasonably good results for small
lithographic gaps, while for larger gaps do not even
reproduce pinch-off of the channel, which is experi-
mentally observed (Iannaccone et al. 2000).

A more detailed model of surface states must there-
fore be used: in particular, we use a model typical of
metal-semiconductor contacts (Sze 1981), and based
on two parameters: an “effective” work function !∗ of

the exposed surface, and a constant density of surface
states per unit energy per unit area Ds . If E0 is the en-
ergy of the vacuum level, we assume that surface states
with energy lower than E0 − q!∗ behave as accep-
tor states, while surface states with energy higher than
E0 − q!∗ behave as donor states.

2. Simulations

We have considered several quantum point contacts de-
fined by split gates on an AlGaAs/GaAs heterostruc-
ture, with different lithographic gaps. The layer struc-
ture consists of an undoped GaAs substrate, an undoped
12 nm Al0.2Ga0.8As spacer layer, a 31 nm layer of doped
GaAs (approx. 1018 cm−3) and an undoped 9 nm GaAs
cap layer.

We have solved self-consistently the Schrödinger
and Poisson equations in a three dimensional domain
in order to obtain the profiles of the first subband and of
the electron density in the 2DEG. The potential profile
in the three-dimensional structure obeys the Poisson
equation

∇[ε($r )∇φ($r )] = −q[p($r ) − n($r ) + N+
D ($r ) − N−

A ($r )],

(1)
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where φ is the electrostatic potential, ε is the dielectric
constant, p and n are the hole and electron densities,
respectively, N+

D is the concentration of ionized donors
and N−

A is the concentration of ionized acceptors. While
hole, acceptor and donor densities are computed in the
whole domain with the semiclassical approximation,
the electron concentration in the 2DEG is computed
by solving the Schrödinger equation with density func-
tional theory.

The observation that electron confinement is strong
along the direction perpendicular to the AlGaAs/GaAs
interface has led us to decouple the Schrödinger equa-
tion into a 1D equation in the vertical (x) direction and a
2D equation in the y–z plane: the density of states in the
horizontal plane is well approximated by the semiclas-
sical expression, since there is no in-plane confinement,
while discretized states appear in the vertical direction.
The single particle Schrödinger equation in 3D reads

−h2

2
∂

∂x
1

mx

∂

∂x
% − h2

2
∂

∂y
1

my

∂

∂y
%

−h2

2
∂

∂z
1

mz

∂

∂z
% + V % = E%;

(2)

we can write %(x, y, z) as %(x, y, z) = ψ(x, y, z)
χ (y, z). By substituting the above expression in (2)
we obtain the following expression
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ψχ + V ψχ = Eψχ , (3)

where the dependence on x , y and z is omitted for
clarity. If ψ satisfies the Schrödinger equation along
the x direction
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by substituting (4) in (3) we obtain
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Assuming that ψ(x, y, z) is weakly dependent on y and
z, and defining
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(5) can be approximated as

ψ T̂yzχ = ψ[E − Ẽ i (y, z)] χ , (7)

where Ẽ i is the i-th eigenvalue of (4). Since Ẽ i (y, z)
in the cases considered is rather smooth in y and z, we
will assume that eigenvalues of (7) essentially obey the
2D semiclassical density of states.

The confining potential V can be written as V =
EC + Vexc, where EC is the conduction band and Vexc

is the exchange-correlation potential within the local
density approximation (Inkson 1984).

Vexc = − q2

4π2ε0εr
[3π3n($r )]

1
3 (8)

For GaAs, we have mx = my = mz = m = 0.067m0,
where m0 is the electron mass, therefore the electron
density can be written as

n(x, y, z) = kBTm

πh2

+∞
∑

i=0

|ψi (x, y, z)|2

× ln
[

1 + exp
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kB T

)]

(9)

where ψi and Ẽ i are the eigenfunctions and eigenvalues
of (4), respectively.

To solve self-consistently the Poisson-Schrödinger
equation, we have used the Newton-Raphson method
with a predictor/corrector algorithm close to that pro-
posed in Trellakis et al. (1997). In particular, the
Schrödinger equation is not solved at each Newton-
Raphson iteration step. Indeed, if we consider the
eigenfunction constant within a loop and eigenvalues
shifted by a quantity q(φ − φ̃), where φ̃ is the potential
used in the previous solution of the Schrödinger equa-
tion and φ is the potential at the current iteration, then
the electron density becomes

n(x, y, z)

= kBTm

πh2

∑

i

|ψi (x, y, z)|2

× ln
[

1 + exp
(

− Ẽ i (y, z) − EF + q(φ − φ̃)
kB T

)]

(10)

The algorithm is then repeated cyclically until the
norm of φ − φ̃ is smaller than a predetermined value.
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Figure 1. Plot of the parameter δ as a function of the gate voltage
VG for a quantum point contact with lithographic gap of 112 nm.

Once the subband profile is obtained, the conduc-
tance in the channel is computed with a method based
on recursive Green’s functions (Macucci, Galick and
Ravaioli 1995).

2.1. Decoupling of the Schrödinger Equation

In order to assess the validity of the approximation
which led us to decouple the Schrödinger equation, we
define

a(x, y, z) ≡ T̂yzψiχ − ψi T̂yzχ ; (11)

a(x, y, z) is the difference between the left-hand sides
of (5) and (7), and, if the approximation is valid, must
be much smaller than the right-hand side in any point
of the domain. This means that the term δ, defined
as

δ ≡ max
x,y,z
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must be much smaller than 1.
In Fig. 1 we plot δ as a function of the voltage ap-

plied on the split gates for a quantum point contact
with lithographic gap of 112 nm. As can be seen, δ is
smaller than 10−8 and therefore the approximation is
very good.

3. Results

To reach convergence at the desired temperature of
4.2 K, a preventive “cooling” procedure is required,

Figure 2. Gate layout of a quantum point contact with lithographic
gap of 112 nm (top), theoretical first subband profile (center) and
electron density in the 2DEG (bottom).

starting from 100 K, and progressively decreasing the
temperature.

The parameters of the surface state model and
the concentration of donors in the doped layer have
been extracted from measurements on purposely fab-
ricated test structures (Pala et al. submitted): !∗ =
4.85 eV, DS = 5 × 1012 cm−2 eV−1. ND has been
chosen as a fitting parameter in order to reproduce
the experimental pinchoff voltages of QPCs with dif-
ferent lithographic gaps. The best fit is provided by
ND = 0.8 × 1018 cm−3. The electron concentration in
the 2DEG is 4 × 1011 cm−2.

In Fig. 2 we plot the gate layout (above), the first
subband in the 2DEG (center), and the electron den-
sity in the 2DEG (below) for a quantum point contact
with lithographic gap of 112 nm and applied voltage of
−0.5 V.

Theoretical G–V curves of QPCs with lithographic
gap of 57, 112 and 140 nm are shown in Fig. 3. With
just one fitting parameter (ND), computed pinch-off
voltages agree within 5% with the average experimen-
tal pinch-off voltages measured on the same structures
(Fiori et al. submitted).

The concentration of impurities in the doped layer
plays an important role in the electrical properties
of devices realized on a 2DEG (Thean, Nagaraja
and Leburton 1997). A simulation that takes into ac-
count the random distribution of impurities in the
bulk is therefore necessary. In particular we assume
that implanted impurities in the bulk obey a Poisson
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Figure 3. Simulated conductance as a function of gate voltage for
devices with lithographic gaps of 57, 112, and 140 nm.

Figure 4. Simulated conductance as a function of gate voltage for
16 nominally identical quantum point contacts with a = 57 nm, but
different actual discrete dopant density.

distribution. We have then simulated an ensemble of
devices with identical nominal doping profile but dif-
ferent actual distribution of discrete impurities.

Simulated G–V curves of nominally identical quan-
tum point contacts with different “actual” dopant dis-
tribution are shown in Fig. 4. For each point of the grid
we have considered its associated element of volume
*V and the nominal doping concentration ND . The
actual number of impurities in *V is obtained as a
random number N′ extracted with Poisson distribution
of average *V ND . Dividing N′ by *V we obtain the
actual local density of dopants.

We have obtained a standard deviation of the pinch-
off voltage σND = 41.5 mV, which is about a half of
the experimental value (Fiori et al. submitted). Such
difference may be due to other sources of dispersion of
the pinch-off voltage, such as geometric tolerances.

4. Conclusion

A solver of the Poisson-Schrödinger equations in three
dimensions has been developed, which includes a
model for surface states based on two parameters: an
“effective” work function of the surface states and the
density of surface states per unit area per unit energy.
We have demonstrated that in the simulation of shal-
low QPCs the Schrödinger equation may be solved
only in the vertical direction, with practically no loss
of accuracy.

We have shown that our code can also include the
effect of discrete impurities in the doped layer, and that
such an effect accounts for about a half of the dispersion
of pinch-off voltage measured in experiments.
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