Four-phase power clock generator for adiabatic logic circuits

A. Bargagli-Stoffi
Lst. Fur Technische Elektronik,
Technical University Munich

Giuseppe Iannaccone
Dipartimento di Ingegneria dell’Informazione: Elettronica, Informatica, Telecomunicazioni,
Università di Pisa

Stefano Di Pascoli
Dipartimento di Ingegneria dell’Informazione: Elettronica, Informatica, Telecomunicazioni,
Università di Pisa

E. Amirante
Lst. Fur Technische Elektronik,
Technical University Munich

D. Schmitt-Landsiedel
Lst. Fur Technische Elektronik,
Technical University Munich

left-most cells and a_{out} in the right-most cells of the array multiplier. The second equality checker is responsible for comparing b_{out} in the upper-most cells and b_{out} in the lower-most cells of the array multiplier. The last equality checker is responded for comparing the results C_4-C_0 obtained at the first time and those at the second time. Only one extra clock cycle is added for the concurrent error detection capability.

![Detailed circuit of cell U_{ij} in Fig. 1](image)

Fig. 2 Detailed circuit of cell U_{ij} in Fig. 1

![Concurrent error detection in array multiplier in Fig. 1](image)

Fig. 3 Concurrent error detection in array multiplier in Fig. 1

A fault tolerant scheme based on the RESO method is shown in Fig. 4. The three results are voted to give the correct result. Only two extra clock cycles are required for the fault tolerant capability.

![Fault tolerance in array multiplier in Fig. 1](image)

Fig. 4 Fault tolerance in array multiplier in Fig. 1

Conclusions: A modified version of Lee–Lu–Lee’s multipliers has been presented. The concurrent error detection capability in this modified array multiplier has been described and only one clock cycle is added. The fault tolerant capability has also been described and only two extra clock cycles are required. Both permanent and transient faults can be detected.
appears in the literature: the 1N or 1N1P single-phase power clock generator [1] can generate a single phase with a conversion efficiency of 70%. The 2N2P two-phase power clock generator [1-3, 8] provides a two-phase sinusoidal clock and requires only one inductor. If control signals are external, the frequency is easily enforced and, with some additional circuitry, two oscillators can be merged into a four-phase generator, with conversion efficiency of 40 to 50%.

Fig. 1 Schematic diagram of circuit of four-phase power clock generator

Phase-shifting oscillator: We propose a four-phase oscillator consisting of a ring of four low-power 90° shifter, as shown in Fig. 1. Each stage is realised with an LC resonant circuit, so that the energy is transferred between the reactive elements while the DC power supply only delivers the energy dissipated on the resistance and on the diodes. Each output of the oscillator drives a stage of the adiabatic circuit, which is represented in Fig. 1 by its equivalent load, a resistance R_v and a capacitance C_v. The inductors L should be external to the chip. The desired phase delay is obtained with a thorough choice of the configuration of reactive elements. Therefore, when the circuit oscillates, the four outputs have the same frequency and a quarter-period shift, as required by the considered adiabatic architectures.

We have considered an implementation based on a standard double-well 0.25 μm CMOS technology, with a DC supply voltage of 1.8 V. For our simulation, R_v and C_v are chosen as the equivalent impedance seen by the power supply of 50 one-bit adders, so R_v is 2 MΩ and C_v is 500 fF. The output amplitude regulation between 0 V and V_{dc} is achieved with Schottky diodes the low V_f of which ensures low power dissipation when diodes are in the conductive state. Since the considered adiabatic families with 0.25 μm CMOS technology have the optimal frequency between 1 and 10 MHz, we have chosen a clock frequency of 7 MHz, which requires $L = 40$ nH. The ring transfer function is the product of four identical single-stage transfer functions, therefore Barkhausen criteria is met when a single-stage transfer function has gain larger than 1 and a phase delay equal to $(2n+1)n/2$, with n integer. The expression of a single-stage transfer function is:

$$\frac{q_4(s)}{q_2(s)} = \frac{R_{d}a_{4}(s_{m} + s_{m})}{s_{m} + s_{m} + s_{m} + s_{m}}$$

where R_{d} is the small signal output resistance of the MOSFETs, and s_{m} and s_{m} are the pMOSFET and nMOSFET transconductances, respectively. By enforcing a phase of $\pi/2$, we can obtain the following expressions for the frequency and the gain:

$$f = \frac{1}{2\pi} \sqrt{\frac{R_{d}a_{4}}{RCL}}$$

$$\frac{\psi_{1}}{\psi_{2}} = \frac{R_{d}a_{4}(s_{m} + s_{m})}{s_{m} + s_{m} + s_{m} + s_{m}} \sqrt{\frac{R_{d}a_{4}}{L + R_{d}a_{4}C_{s}}} \frac{R_{d}a_{4}C_{s}}{(R_{d}a_{4} + R_{d})L}$$

The above results are based on a simplified equivalent circuit. According to our simulations the optimum gain is found between 1.5 and 3.0; for lower values the circuit does not oscillate, while with higher gain the outputs tend to square waveforms and diodes are in the conductive state for a large part of the period, thereby increasing dissipation. To reduce dissipation on the channel resistance, the pMOSFET W/L ratio is ten times larger than that of the nMOSFET. The threshold voltages of the n- and p-MOSFETs are $V_{thn} = 0.45$ V and $V_{thp} = -0.42$ V, respectively.

Increased efficiency can be obtained with higher threshold voltage devices; for this reason, we have also considered the case of high V_f MOSFETs, with $V_{th} = -V_{f} = 0.9$ V.

Simulation results: The operation of the circuit has been simulated with PSpice. The oscillator has a conversion efficiency of 85%, with the high V_f MOSFETs, and of 77% with the 'normal' V_f MOSFETs. We have also evaluated the power conversion efficiency when parameter variations occur. With a 30% variation of the value of one capacitance with respect to its nominal value, the reduction of conversion efficiency is less than 1% and the frequency variation is less than 5%. With a 30% variation of the value of a single inductance the reduction of efficiency is 6%, and the frequency variation is 6%.

Fig. 2 Waveforms generated by four-phase clock generator loaded with four-bit adder

To evaluate the performance of the oscillator as a power supply of a real adiabatic circuit, we have simulated a system consisting of our power clock generator and a four-bit ripple carry adder realised with ECRL logic. The four-phase trapezoidal power clock waveforms are shown in Fig. 2. The conversion efficiency maintains its average value of around 82% with the high V_f devices and of 75% with the 'normal' V_f devices.

Conclusion: We have presented an oscillator that generates the four-phase trapezoidal power clock for three adiabatic logic families proposed in the literature. We have shown that the proposed circuit can reach a power conversion efficiency higher than 80%, with almost trapezoidal waveforms, is robust to load and parameter variations and does not require complex control circuits.

Acknowledgment: This work was supported by the German Research Foundation (DFG) under grant SCHM 1478/1-1 and SCHM 1478/1-2.

© IEEE 2002

Electronics Letters Online No: 20020523
DOI: 10.1049/el.20020523
A. Bargagli-Stoffi, E. Amirante and D. Schmitt-Landsiedel (Inst. für Technische Elektronik, Technical University Munich, Arcisstr. 21, 80333 Munich, Germany)
E-mail: bargagli@et.i,TUM.de
G. Iannaccone and S. Di Pascoli (Dipartimento di Ingegneria della Informazione, Università di Pisa, Via Dintorinai, 2, 56122-Pisa, Italy)

References

ELECTRONICS LETTERS 4th July 2002 Vol. 38 No. 14