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Abstract
We propose a simple method for computing the single-particle
eigenfunctions in nanostructures with three-dimensional confinement. The
proposed procedure transfers the problem to the momentum space, solves an
eigenvalue equation on a reduced wavevectors space and then transfers the
solution back to the real space. We show that in such a way it is possible to
obtain the eigenvectors and eigenvalues corresponding to lower energies
with significant improvement in computing time and memory requirements
with respect to numerical methods in the coordinate space. The method can
be applied to structures with inhomogeneous effective mass and can easily
include the full band structure. We have tested the code on typical confining
potentials of nanostructures, in order to show the advantages and possible
limitations of the proposed method.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Detailed simulation of nanoscale devices requires that quan-
tum mechanical effects that emerge in the case of strong
electron confinement be properly taken into account. The
many-particle Schrödinger equation can usually be solved with
density functional theory, and the local density approxima-
tion [1–3]. In such a framework, typical methods are based on
the self-consistent solution of the nonlinear Poisson equation
and of the single-particle Schrödinger equation.

In the case of three-dimensional confinement, the
diagonalization of the Hamiltonian needed to solve the
eigenvalue problem (H! = E!) can require huge
computational resources. Indeed, if we discretize the problem
domain with a three-dimensional grid of N × N × N points
we obtain a matrix of order N3. In the case of the three-
dimensional Schrödinger equation we obtain a symmetric
matrix in which the non-zero elements are only in seven
diagonals (7N ). For large N the use of direct methods of
diagonalization such as the Jacobi method or the Householder
method [4] may become prohibitive. Since researchers are

frequently interested only in eigenvalues and eigenvectors
close to a particular energy level, selective methods that
enable partial solutions of the eigenvalue problem have been
successfully developed, such as, for example, those based on
the method of powers or on the heat equation [4]. A commonly
used technique consists in the so-called Lanczos methods,
based on the tridiagonalization of the Hamiltonian, and in
the direct solution of the tridiagonal matrix [5]. The possible
convergence problems arising from the loss of orthogonality
of the Lanczos vectors have been overcome by some authors
with specific modifications of the standard algorithm [6].
Other authors have proposed selective relaxation methods
characterized by strong stability in convergence [7], or the
Hamiltonian variational approach [8].

We will show that transferring the eigenvalue problem
to the momentum space provides significant advantages with
respect to solving the problem in the coordinate space, in terms
of computing time and memory requirements. In addition, it
easily allows one to perform full band simulations, which is
important in strongly confined structures, where the effective
mass approximation may be inadequate.
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Trellakis [9] analysed the problem of the correction effects
due to the non-parabolicity in silicon-based devices. He
observed that the kinetic part of the Schrödinger equation is
diagonal in the momentum space representation: therefore, he
proposes to write the kinetic part in the momentum space and
then, by means of the Fourier transform, to transfer the kinetic
energy to the coordinate space. Then he used the Arnoldi
algorithm, based on the Krylov vectors, to diagonalize, for
a minimum number of eigenvectors, the Hamiltonian matrix.
He alternatively proposed to transfer the potential term in the
momentum space and then to solve the eigenvalue problem.

We propose a code that takes the information on the
confining potential in the coordinate space (x-space), but
solves the equation in the momentum space (k-space). The
steps of this approach consists of transforming the input data
through a Fourier transform (in particular, we will use the
sine Fourier transform in order to enforce Dirichlet boundary
conditions), solving a reduced eigenvalue problem in the
k-space and then transferring back the eigenfunctions to
the x-space. If we are interested only in the low-energy
eigenfunctions, it is possible to strongly reduce the dimension
of the Hamiltonian matrix in the k-space with no loss of
accuracy in the eigenfunctions and eigenvalues.

2. Theory

Let us explain our approach for a one-dimensional problem.
In the x-space we can describe a generic function f (x)

with a series f (x) =
∑

n anvn(x), that consists of a linear
combination of the vectors of the orthogonal basis {vn(x)}. A
natural choice for the basis functions would be the complex
exponentials {eikx} that imply the use of the fast Fourier
transform (FFT) algorithm. Nevertheless, in order to enforce
Dirichlet boundary conditions for the eigenfunctions, we use
the sine Fourier transform.

However, it is clear that, if the given function f (x) is quite
similar to the first vectors of the basis, it can be reasonably
approximated by a series truncated to lower order. In our code
we calculate the eigenfunctions by solving the Hamiltonian
in the k-space and suppose that for a good approximation of
the first eigenfunctions it is sufficient to diagonalize a reduced
matrix, in which we retain only terms associated with smaller k.
The advantage, from the point of view of memory requirements
(that scale as N , where N is the matrix dimension) and of
computing time (that scales between N2 and N3) is evident.

As an example, we first consider the eigenfunctions of
a triangular confining potential, for which we have the exact
analytical eigenfunctions. In figure 1 we plot the norm of
the error associated with the first low-energy eigenfunctions
obtained with different discretizations. With dotted curves we
indicate the errors due to a solution in the x-space, versus the
number N of discretization points in the x-space. Solutions
in the k-space are obtained by first discretizing the equation
in the x-space on 512 grid points, by transferring the problem
into the k-space with the sine Fourier transform, by solving
the eigenvalue problem on a minor of dimension N of the
complete matrix, and finally by transferring back the solution to
the x-space. The norm of the error associated with the solution
in the k-space is plotted with solid curves as a function of N . It
is worth noting that the computing time basically depends only
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Figure 1. Two-norm of the difference between the analytic
eigenfunctions !0 (Airy functions) and those calculated from the
diagonalization of the reduced Hamiltonian of order N in the
k-space (solid curves) and those obtained from the diagonalization
of the Hamiltonian in the x-space on N grid points (dashed curves).
The confining potential is a triangular well. Index n indicates the
nth eigenvector (n = 1 is the lowest).

on N . It can been seen, for example, that if an error of 10−4

is required, we need to solve an eigenvalue problem of order
N = 512 in the coordinate space, and of only order N = 32 in
the k-space. Since the computing timescales between N2 and
N3, the time saving is a factor between 64 and 512.

The single-particle three-dimensional Schrödinger equa-
tion in the x-space
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+ V(x, y, z) !(x, y, z) = E !(x, y, z), (1)
in the k-space becomes a very complicated expression that is
the generalization of the following one-dimensional formula:∫

dk′
x Fs{!}(k′
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×
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}

= E Fs{!}(kx) (2)
with obvious notation for the sine transform Fs and cosine
transform Fc. For example, the term relative to the sine Fourier
transform of ∂

∂x
m−1

x (x, y, z) ∂
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!(x, y, z) is
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Figure 2. The lowest 50 eigenvalues of a three-dimensional
harmonic oscillator corresponding to different truncated bases in the
x-space or in the k-space, compared with the analytic eigenvalues.
A truncated basis of 83 elements in the k-space provides the same
accuracy as a basis of 163 elements in the x-space.

where

Fs{f }(kx, ky, kz) ≡
∫ ∫ ∫

dx dy dz sin(kxx) sin(kyy)

× sin(kzz) f (x, y, z) (3)

and

Fc{f }(kx, ky, kz) ≡
∫ ∫ ∫

dx dy dz cos(kxx) cos(kyy)

× cos(kzz) f (x, y, z) (4)

are, respectively, the sine transform and cosine transform of
f (x, y, z) and we have another similar expression for the other
part of the Hamiltonian.

From the discretization of the three-dimensional gener-
alization of equation (2) we find the matrix of the complete
eigenvalue problem. Then we diagonalize only the sub-matrix
corresponding to smaller k vectors.

3. Simulations

In this section we show examples for evaluating the efficiency
of the three-dimensional Schrödinger solver in the momentum
space for typical confining potentials in nanostructures.

As a first test structure we consider a three-dimensional
harmonic potential V(x, y, z) = 1

2 m ω2 (x2 + y2 + z2). The
parameter values are m = 0.067 × 9.1 × 10−31 kg (GaAs
effective mass), ω = 2 × 1013 Hz and the domain size a
cube of dimensions 200 × 200 × 200 nm3. We compare
the performance of our code and with that of codes based
on the solution in the coordinate space, in terms of accuracy
and computing time. The Schrödinger equation has been
discretized in the coordinate space on a grid of 16 × 16 × 16
points. Then, the whole matrix of order 163 has been
transferred into the k space by means of the FFT. In the k-space,
we reduced the eigenvalue problem by keeping only the matrix
coefficients corresponding to low-k terms. In figure 2 we plot
the first 50 energy eigenvalues obtained from a basis in the
k-space of 16 × 16 × 16 vectors, on a basis of 8 × 8 × 8 and
on a basis of 4 × 4 × 4. In the same figure we also plot the
exact analytic solution and the values obtained from an x-space
solver on a grid of 16 × 16 × 16 points and 8 × 8 × 8 points.
From figure 2 it can be noticed that the solution on a reduced
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Figure 3. The lowest 50 eigenvalues of a cylindrical confining
corresponding to different truncated bases in the x-space or the
k-space. The cylinder has a circular basis with radius 10 nm and a
height of 10 nm, and potential barriers of 1 eV.

Table 1. The CPU running time of an 800 MHz Pentium III
required for the solution of the eigenvalue problem for a parabolic
potential defined on a grid of 16 × 16 × 16 points in the real space.
The computing time for solving the problem in the k-space includes
the FFT of the equation, the complete diagonalization and the
anti-FFT of the eigenvectors.

Sub matrix dimension Computing time

16 × 16 × 16 in the k-space 89 min (complete diag.)
16 × 16 × 8 in the k-space 10 min (complete diag.)
16 × 8 × 8 in the k-space 64 s (complete diag.)
8 × 8 × 8 in the k-space 7 s (complete diag.)

16 × 16 × 16 in the x-space 95 min (complete diag.)
16 × 16 × 16 in the x-space 20 min (first ten eigenvalues )

set of 83 vectors in the k-space provides better accuracy than
the solution on a grid of 163 points in the x-space.

Table 1 shows the CPU running times required by
a 800 MHz Pentium III PC, with the solver based on
wavevector grids of different size. Well known routines
based on the Householder methods1 are used for the complete
diagonalization, while the routine DNLASO [10], based on
a Lanczos method, is used for extraction of the lowest ten
eigenvalues. The solution on the reduced set of 83 vectors
in the k space requires 7 s, while the solution on 163 points
in the coordinate space requires 95 min for the complete
diagonalization, or 20 min for extracting only the lowest ten
eigenvalues.

Let us underline the fact that the main advantage comes
from the fact that we can use a fine discretization in the x-space,
in order not to lose the details of the confining potential,
because the computational cost of performing an FFT of a
matrix of order 163 is negligible (smaller than 50 ms).

With the use of the proposed routine, the computing time
for the solution of the single-particle Schrödinger equation
becomes negligible with respect to the total time for the
self-consistent solution of the Poisson–Schrödinger equation.
Therefore, we can perform a complete diagonalization of the
Hamiltonian with a simple well known code2.

1 Routines tred2 and tqli from [4].
2 See footnote 1.
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Figure 4. The lowest 50 confining eigenvalues corresponding to a
lens-shaped InAs quantum dot with a circular basis of radius 10 nm
and a height of 4 nm (shown in the inset). The best trade-off between
computing time and accuracy is obtained with a basis of 83 elements.

It is clear that the method takes advantage of the similarity
between the sines of lower order and the eigenfunctions of the
Hamiltonian related to smaller energies. Therefore, it provides
the best performance in the case of strongly confined systems,
where the confining region has a shape similar to the domain
in which the Schrödinger equation is solved.

The second example we consider is a quantum dot defined
by a cylindrical potential, with a circular base of radius 10 nm,
a height of 10 nm and a confining energy of 1 eV. The data
presented in figure 3 give the same results as figure 2, and shows
that it is possible decrease the dimension of the Hamiltonian
in the k-space to 8 × 8 × 8 points with the same accuracy
of a solution on a 16 × 16 × 16 grid, while this would not
be possible in the x-space. In this case, the potential in the
x-space is discretized on a grid of 323 points.

As a third example we have simulated a lens-shaped
quantum dot of InAs embedded in Al0.2Ga0.8As, with a radius
of 10 nm and a height of 4 nm, shown in the inset of figure 4.
The potential well has a height of 1.05 eV. The data presented in
figure 4 gives the same results as the data presented in figures 2
and 3. Again, a solution on a basis of 83 elements in the k space
provides the same accuracy of a solution on 163 points in the
coordinate space.

4. Conclusions

We have presented a method to solve the three-dimensional
Schrödinger equation for systems with variable effective mass
based on the expansion of the sine Fourier series. We have
shown that this method allows us to solve the eigenvalue
problem on a reduced matrix in the k-space, with negligible
loss of accuracy, and significant saving in terms of computing
time. This method also has the advantage of allowing full band
simulations, which may be important for nanoscale structures
when the parabolic approximation of the dispersion relation
does not hold. We have shown that if we are interested
only in the lower eigenvalues, the order of the matrix can
be typically reduced by a factor 8, which typically means a
corresponding reduction of the computing time by about two
orders of magnitude. The same method is presently being
applied to the solution of the Schrödinger equation with open
boundary conditions.
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