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We present the peculiar noise behavior of bistable systems of coupled quantum dots during switching
between the two stable states. Shot noise of the current through different branches of the system can be
suppressed and/or enhanced up to a few times the ‘‘full’’ shot-noise level. Results from Monte Carlo simula-
tions and from an analytical model are presented.
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I. INTRODUCTION

In the investigation of transport mechanisms in nanostruc-
tured devices, modeling and measurement of shot noise, i.e.,
nonequilibrium current fluctuations associated with the
granularity of charge, could provide additional information
not otherwise available through dc transport analysis.
Poisson statistics describes electron motion when there is

no correlation between electrons. In this case the ‘‘full’’ shot
noise is observed and the zero-frequency power spectral den-
sity is SP(0)"2qI ,1 where q is the electron charge and I is
the average current. Deviations from this behavior are due to
the presence of correlation between charge carriers. There
are mainly two kinds of correlation. First, there are correla-
tions due to the Pauli exclusion principle, which cause reduc-
tion of shot noise with respect to the ‘‘full shot’’ level. It is
known, for instance, that in quantum point contacts shot
noise is totally suppressed in conductance plateaus. Instead,
in diffusive conductors the suppression is 1/3 with respect to
the full shot-noise level !for a thorough review of experimen-
tal and theoretical investigations see Ref. 2". A second source
of correlation is Coulomb interaction. This is extremely im-
portant in Single Electron Tunneling !SET" devices, in which
the very nature of the transport mechanism is associated with
Coulomb interaction, which in metal quantum dots is taken
into account through the charging energy of tunneling junc-
tions.
The theory of shot noise in SET’s has been developed by

Hershfield et al.,3 for one of the simplest SET devices, con-
sisting of two double junctions connected in series. They
demonstrate, for instance, that in the Coulomb staircase re-
gime, i.e., for strongly asymmetric junctions, shot noise can
be suppressed down to 1/2 of the full shot level. Experimen-
tal evidences of this behavior have been shown by Birk
et al.4 In addition, other authors have shown, both
theoretically5 and experimentally,6 the possibility of an even
greater suppression in the regime of Coulomb oscillations,
when the number of electrons in the dot is driven by an
external gate.
Recently, shot noise in SET devices such as arrays of

tunnel barriers has been studied in order to better understand
the conditions under which transport can be considered as a
discrete or a quasicontinuous charge transfer.7–9

In all of the above examples, negative correlation of the
electron motion leads to suppression of shot noise.
In this paper we will also report an example of shot-noise

enhancement due to a positive correlation between electron
tunneling events. There are few situations in which this be-
havior has been investigated. Mainly, shot-noise enhance-
ment has been studied in double-barrier resonant diodes,10–15
in which the mechanism leading to a super-Poissonian shot
noise is the existence of a negative differential conductance
region in the current–voltage characteristic.
Shot-noise enhancement has been also theoretically pre-

dicted in a single tunneling barrier,16,17 in which the space-
charge region preceding the barrier controls the tunneling
transmission probability.
In this paper we investigate the shot-noise behavior in a

SET device made up of two capacitively coupled metallic
double dots !CMDD". In Fig. 1 we report an equivalent cir-
cuit diagram for this structure. Tunneling is allowed between
the dots forming each double-dot structure, for instance, be-
tween dots 1 and 2, between dots 3 and 4, and between the
dots and the external leads. This allows current to flow be-

FIG. 1. Equivalent circuit of the CMDD. Tunneling junctions
are represented by tunneling capacitors, !as, for example, the one
between dots 1 and 2", while electrostatic interaction between the
upper and the lower pair of dots, and between dots and gates is
represented by classical capacitors.
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tween two leads through dots 1 and 2 !current iD), and
through dots 3 and 4 !current iU) once a small voltage dif-
ference is applied between the right and left leads. We are
interested in the case in which an excess electron is present
in each double dot. Due to the electrostatic repulsion, at the
equilibrium, the two electrons occupy antipodal dots !1 and 3
or 2 and 4". If the chemical potentials values in the dots
forming a double-dot structure are not aligned, there is no
current flow and, therefore, we are in the Coulomb-blockade
regime. Using the bias on the external gates to align the
chemical potential values in the dots with those in the leads,
we can bring the system out of the Coulomb-blockade re-
gime, and current will flow through the pair of dots.
We study shot noise in currents iD and iU in this situation.

We will show the peculiar behavior of shot noise when a pair
of dots, for instance, the upper one, is in the conducting
regime while the other is on the edge of Coulomb blockade.
In this case the current iU shows the typical suppression of
shot noise, while the current iD shows a strong shot-noise
enhancement. From a qualitative point view, this behavior is
due to the strong correlation between transitions of electrons
from dot 4 to dot 3 and from dot 2 to dot 1: an electron
tunneling from dot 4 to dot 3 pushes an electron from dot 2
to dot 1, and, until the electron remains on dot 2, further
tunneling from dot 4 to 3 is suppressed; then, when the elec-
tron transition from dot 2 to dot 1 occurs, tunneling from dot
4 to 3 is enabled again, but further tunneling from dot 2 to 1
is suppressed until the transition from dot 4 to 3 occurs.
Since the lower pair of dots is on the edge of Coulomb
blockade, the characteristic time of transitions from dot 2 to
1 is much larger than the characteristic time of transitions
from dot 4 to 3. For this reason, this mechanism introduces
negative correlation between current pulses in iU !i.e., ‘‘regu-
lates’’ the sequence of current pulses" and, therefore, sup-
pressed shot noise, while introduces positive correlation be-
tween the current pulses in iD , and, therefore, enhanced shot
noise. We will analyze this mechanism in detail in the fol-
lowing sections.
The paper is organized as follows: in Sec. II we describe

the circuit representation of the CMDD that we have consid-
ered in our simulations. We briefly describe the Monte Carlo
algorithm that we have implemented and the estimator we
have used for the Fano factor # , i.e., the ratio, at zero fre-
quency, of the noise power spectrum to the full shot-noise
power spectrum. In Sec. III we report the numerical results,
beginning with the investigation of shot noise in a single
double-dot structure, also known as single-electron
pump,18,19 and then proceeding with the discussion of the
results we have obtained in CMDD. In Sec. IV we describe
an analytical model, based on a formalism borrowed from
Ref. 20, developed in order to clarify the mechanism that is
responsible for the peculiar shot-noise behavior, at low tem-
perature. The analytical results are compared with the nu-
merical ones and good agreement is obtained. Finally, Sec. V
contains some concluding remarks.

II. FORMALISM

In order to evaluate the shot noise of the currents that flow
through the CMDD system, we have developed a Monte

Carlo code based on the semiclassical theory of the Coulomb
Blockade.21 In the following we will describe the model we
have used for the CMDD, based on classical and tunneling
capacitors, and the expressions for the calculation of the
Fano factor.

A. Circuital representation of CMDD

The metal-island system reported in Fig. 1 has been pro-
posed as the elementary cell of the Quantum Cellular Au-
tomaton !QCA" architecture.22 Indeed, using two excess
electrons, two logical states can be encoded in this structure,
and properly structured two-dimensional arrays of such cells
can implement any logical function.
While QCA architectures have several interesting features

and intrinsic advantages with respect to conventional
complementary metal-oxide conductor architectures, funda-
mental and technological problems have been assessed that
prevent any practical implementation of large-scale circuits,
at least with solid-state technology.23,24 However, the QCA
architecture is beyond the scope of this paper, and we con-
sider the circuit shown in Fig. 1 as a testbed for investigating
noise properties in SET circuits.
Tunneling between adjacent dots and between dots and

external leads is taken into account by means of tunneling
capacitors. A tunneling capacitor is characterized by a ca-
pacitance C, and by a resistance R, which enters the orthodox
formula of the tunneling rate21

$"
1
e2R

%E
1#exp!#%E/kBT "

, !1"

where e is the electron charge, kB the Boltzmann constant, T
the temperature, and %E is the free-energy variation. We
have used the following expression in order to evaluate it:

%E"&! 12 '
i , j ! islands

!qi! q̃ i"Ci j
#1!q j! q̃ j" "

! '
k ! sources

Vk&qk , !2"

where qi is the charge in the ith dot, C#1 is the inverse
capacitance matrix, and q̃ i is the charge bias induced by the
coupling between the ith dot and external voltage sources,
and it is defined as q̃ i"'k ! sourcesCkVk . The summation is
only performed over voltage sources Vk connected to the ith
dot via a capacitance Ck . The last term in Eq. !2" represents
the work done by the source Vk if the tunneling of a charge
&qk occurs through a junction connecting the source with the
dot.
We denote the circuit elements in the upper section with

the subscript U: we have tunneling capacitors TU with ca-
pacitance CU and resistance RU . Circuit elements in the
lower section have completely analogous denominations, ex-
cept for the subscript, which is D for this latter case. Inter-
action between the two pairs of dots is introduced by means
of the capacitors CA . Finally, CV represents the capacitive
coupling with the external gates. In our simulation we have
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used the following numerical values: CU"0.5 aF, CD
"0.5 aF, CA"1.2 aF, CV"0.42 aF, RD"RU"5 M( ,
and V"2 mV. We note that the values of tunneling resis-
tances are much larger than the resistance quantum Rq
"h/2e2#12.9 k( , as required by the orthodox theory in
order to ensure electron localization.
For each given configuration of gate voltages, the time

evolution is computed in the following way. The free-energy
variations %E associated with all possible transitions of a
single electron through a junction are evaluated and the re-
lated probability rates are obtained from Eq. !1". A transition
is then chosen at random, according to such probabilities,
and the charge configuration is updated. Then the time inter-
val between this and the following transition is generated as
an exponentially distributed random number with average
equal to the inverse of the total tunneling rate, obtained as
the sum of the rates for all possible transitions. The evolution
stops when a given observation time T is reached. For each
voltage configuration, a few thousands of time histories are
generated in order to obtain a large ensemble on which we
perform the averages required for shot-noise evaluation.

B. Power spectral density and cross-correlation estimator

The power spectral density of a real random process i(t)
is defined as the Fourier transform of the correlation function

S!)""2$
#*

*

dt e#i)t+ i! t "i!0 "#I2, . !3"

In Eq. !3" we have used the overline notation to denote en-
semble averages and I-i(t).
We are dealing with a finite process, then we need an

estimator of Eq. !3". Let T be the time of observation, then a
good estimator is

PT!)""
2
T % $0Tdt e#i)t+ i! t "#I,%2. !4"

Indeed, if we evaluate its expectation value we get,

ST!)"-PT!)"#S!)"!
1

2.2T 2
d2S

d)2 !)"$
#1

1 dx
.
x2! sin xx " 2,

!5"

where we have neglected terms of order o(1/T 4). Letting T
go to infinity, we recover the power spectral density

lim
T→*

ST!)""S!)". !6"

In our model the random process is the current that flows
through the external voltage source when an electron tunnel-
ing event occurs. The expression of this current is

i! t "" '
0/tk/T

&qk&! t#tk", !7"

where &qk is the charge flowing through the voltage source
at the tunneling event time tk . The pulse shape can be de-
scribed as a & function because we are interested only in

low-frequency noise. Using Eq. !7" and ST for the estimation
of the spectral density we get the following expression of the
Fano factor #:

#-
S!0 "

2ei! t "
"

' k , j &qk &q j#' k &qk2

e' k &qk

. !8"

We collect a few thousand time evolutions, each of them
lasting a time T. Such a collection is used to evaluate the
averages in Eq. !8" and, therefore, to calculate the Fano fac-
tor.
We are also interested in the cross correlation between the

upper and the lower current. Following the same steps as for
the spectral density case, we get the following estimator for
the cross-correlation factor at zero frequency:

C"

' k , j &qk
U&q j

D#' k &qk
U' k &qk

D

!#U#D' k &qk
U' k &qk

D

, !9"

where we use superscript D for the lower circuit quantities,
and U for the upper circuit quantities.

III. NUMERICAL RESULTS

A. Single-electron pump

We start our numerical analysis of shot noise from the
case in which there is no interaction between the upper and
the lower pair of dots. Let us focus only on the lower pair of
Fig. 1. We are dealing with a device known as single-
electron pump:25 at zero-bias voltage, i.e., V"0, the stable
configurations of the device tile the plane (Q̃1-V1CV , Q̃2
-V2CV" with elongated hexagons, yielding the so called
honeycomb diagram. Let us define the points at the intersec-
tion of three different stable configurations triple points.
When a bias V is applied, the previous honeycomb structure
is distorted, and the triple points become wider regions of
instability between the different stable charge configurations.
If we consider the current flowing in the pair, we find, as it is
well known, that in correspondence with the triple points
there are current peaks.18,19
The operation of a single-electron pump consists in plac-

ing the circuit configuration in the vicinity of a triple point.
Then two periodic signals with the same frequency but a
phase difference of ./2 are applied to V1 and V2, in order to
follow a closed path in the configuration space all around the
triple point. When a closed path is completed, an electron has
been moved from one external lead to the other. We have
evaluated the Fano factor of current iD as a function of V1
and V2, and the result is reported in Fig. 2. In this device we
have only suppression of shot noise. Dark regions of Fig. 2
correspond to ##1, bright regions to smaller # . As can be
seen, the Fano factor reproduces the honeycomb structure.
The larger iD , the smaller the Fano factor # . At the triple
point the Fano factor reaches its minimum value of 1/3.26
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B. Shot noise in a CMDD structure

Let us proceed with a discussion of the results of the
numerical simulations in the CMDD structure, which is an
interacting couple of single-electron pumps.
In the Introduction we have anticipated how the CMDD is

operated in our investigation of shot-noise behavior. With
reference to Fig. 1 for the symbols, a small voltage V is
applied to the external leads in order to have currents iU and
iD flowing in the upper and in the lower pair of dots, respec-
tively, whenever the chemical potentials in the corresponding
single-electron pump are aligned. If there is no alignment, no
current flows through the leads, and the system is in the
Coulomb-blockade regime.
The chemical potential of the nth dot is mainly influenced

by the external gate Vn . Let us describe how to align the
chemical potential of two dots, for instance, dots 1 and 2: we
apply a voltage ramp with a negative slope to dot 1, in our
example V1"0.88 V#VD , where VD varies linearly in time
in the range between 0 V and 0.6 V, as reported in Fig. 3. We
also apply a voltage ramp with positive slope to dot 2, V2
"#0.48 V!VD . In this way, we allow the chemical poten-
tial values on dots 1 and 2 to align, at some specific time,
with the Fermi energy level of the external leads, giving rise
to a peak in iD . We stress the fact that the time evolution is

assumed to be very slow, so that the behavior of the circuit
can be considered quasistationary.
The upper pair of dots is operated in the same way. How-

ever, as shown in Fig. 3, we have introduced a shift between
the upper and the lower ramps. In this way, as reported in
Fig. 4, the current peaks of iU and iD that we obtain when
only the upper and the lower pair of dots, respectively, are
operated, are well separated. When the two pumps are oper-
ated at the same time, the current peaks show a locking effect
due to the electrostatic interaction represented in Fig. 1 by
the CA capacitors, which is discussed in detail in Ref. 27. In
some sense, the current iU , which starts earlier than current
iD , drives the current iD in the first part of the locking pro-
cess, while in the second part iD drives iU . This locking
effect of current peaks is reported in Fig. 5. We have inves-
tigated the shot noise of currents iU and iD in this regime,
and our results are reported in Fig. 6. When the current iU
drives the current iD , it exhibits the typical suppressed shot
noise. Instead, current iD , the driven one, presents a peculiar
shot-noise enhancement. The maximum enhancement occurs
when the difference between iU and iD reaches its largest
value. Then shot noise for both currents approaches the Pois-
sonian value, i.e., the Fano factor # tends to 1. Full shot
noise, i.e., #"1, is retrieved when iU and iD have about the
same value and there are no more a driver and a driven
current. Beyond this point, the roles of current iU and iD are
exchanged, and iU becomes the driving current while iD be-
comes the driven one. The shot-noise behavior is also inter-
changed, as shown in Fig. 6.

FIG. 2. Fano factor # of a single-electron pump at the tempera-
ture of 20 K. Dark regions correspond to ##1 and bright regions to
smaller # .

FIG. 3. Voltage ramps applied to the external gates in order to
vary the chemical potentials of the dots. Using this setup,
the chemical potentials of the two dots forming a pair are
aligned with the Fermi energy levels of the external lead, allowing
current to flow.

FIG. 4. Current peaks of iU !solid line" and of iD !dashed line"
when only the upper and the lower pair of dots, respectively, are
operated. The current peaks are well separated due to the shift we
introduced between the upper and the lower voltage ramps.

FIG. 5. Current peak of iU !solid line" and of iD !dashed line"
when the upper and the lower pair of dots are operated at the same
time. A locking effect !Ref. 27" due to electrostatic coupling be-
tween the two pairs of dots is shown.
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We have also considered the cross-correlation factor be-
tween current iU and iD . In the lower curve of Fig. 6 we
have reported the result of the simulation. Indeed, we find
that there is a significant correlation between the two cur-
rents when the driver/driven mechanism is active. The curve
is symmetric with respect to the point where the currents
change their roles. In this point, as one can expects, there is
no correlation at all.

IV. ANALYTICAL MODEL

We have also developed an analytical model valid in the
zero-temperature limit. In this regime only few transitions
are allowed, and the mechanism that leads to current trans-
port is well understood. The formalism we use was proposed
by Korotkov20 for the optimization of the theoretical sensi-
tivity of a single-electron transistor used as an electrometer.28
The idea is based on a path-integral approach to random

walk. The transport process is regarded as a path in the
charge configuration space. A single charge configuration can
be represented by the quadruplet indicating the amount of
charge, in electron units, contained in each of the four quan-
tum dots in the CMDD. In our case, we are interested only in
configurations in which the number of electrons in each dot
can take on only two values. Without loss of generality, we
can assume that the two values are 0 and 1. We have repre-
sented the quadruplet with four circles and we have codified
0 with the white color and 1 with the black color !see Fig. 7".
A path can be divided into sequential jumps between

charge configurations, with each jump characterized by a
transition-rate probability. Let us refer to a single path as 0 .
Then, for each path 0 , we can evaluate the probability of the
path P(0), the time it takes to go through this path 1(0) and
the charge e k(0) that flows through the voltage source dur-
ing this path.
Once we have determined the main paths that form the

transport process, we can evaluate, by performing the aver-
age on this ensemble of paths, the mean time of the process
T"1(0), and the average charge that has flowed through the
voltage sources Q"e k(0). Using these quantities, we have
the mean current I"Q/T.
Following the definitions of the power-spectrum estimator

given by Eq. !4" and by Eq. !5", we can obtain an expression
for the Fano factor as a function of averages on the path
ensemble,

#"
1

2eI

2

1!0" ! $01(0)+ i! t "#I,dt " 2

"
1

2eI

2

1!0"
+ek!0"#I1!0",2

"
1

2eI

2

1!0"
+e2k2!0"#2eIk!0"1!0"!I212!0",

"
1

1!0" ! 1!0"

ek!0"
ek2!0"#2k!0"1!0"!

ek!0"

1!0"

12!0"

e "
"
k2!0"

k!0"
#2

k!0"1!0"

1!0"
!k!0"

12!0"

1!0"2
. !10"

Let us return to our model. By a direct inspection of tunnel-
ing rates as the temperature tends to zero, we have been able
to extract the main transitions giving rise to current flow in
the device. We start from the configuration with the two ex-
cess electrons in the right column !see Fig. 7". From this
configuration we have sketched the two possible paths in the
charge configuration space. The first path, which we indicate
with 0U , allows current to flow in the upper pair of dots,
while the second path, which we indicate with 0D , allows
current to flow in the lower pair of dots. The probability to
follow path 0U is P(0U)"$U /($U!$D) and that to follow
path 0D is P(0D)"$D /($U!$D), where $U and $D are the
probabilities per unit time of leaving the starting configura-
tion as reported in Fig. 7.
At low temperature, the transition rates $1 , $1! and $2 ,

$2! !the corresponding transitions are indicated in Fig. 7" are

FIG. 6. The upper curves show Fano factor of currents iU !solid
line" and iD !dashed line" when the two pairs of dots of the CMDD
structure are operated at the same time, with the voltages shown in
Fig. 3. Both Fano factors show a large enhancement with respect to
the full shot level, and a typical suppression. The enhancement
occurs when the electron transport is driven by the current in the
other pump. In the driving regime, the Fano factor exhibits suppres-
sion. In the lower curve we have reported the cross correlation
between the two currents. Where there is the maximal enhancement
of shot noise, there is also the maximal correlation between the two
currents.

FIG. 7. Sketch of the two paths 0U and 0D that allow current to
flow in the upper and in the lower pairs of dots, respectively, mak-
ing up the CMDD.
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much smaller than all the other transition rates. This implies
that flow through path 0U and 0D obeys Poissonian statistics
with mean time 1(0U)"1/($1!$1!) and 1(0D)"1/($2
!$2!) and with mean square time 12(0U)"2/($1!$1!)2 and
12(0D)"2/($2!$2!)2.
Using these expressions we can evaluate the mean time of

the process, as required by Eq. !10"

1"P!0U"1!0U"!P!0D"1!0D"

"
$U

$U!$D

1
$1!$1!

!
$D

$U!$D

1
$2!$2!

, !11"

and the mean square time

12"
$U

$U!$D

2

!$1!$1!"2
!

$D

$U!$D

2

!$2!$2!"2
. !12"

As far as the charge that flows through the voltage sources is
concerned, we notice that we can distinguish between path
0U for which there is no charge flowing in the lower pair of
dots, and 0D for which there is no charge flowing in the
upper pair of dots. We have that current iU (iD) is not zero
when the system follows path 0U (0D), and only in this case
it makes sense to evaluate the Fano factor !10". Thus, we
have two different Fano factors, #U for the upper current,
and #D for the lower one. Let us use the subscripts U and D
for quantities referring to the upper and lower pair of dots,
respectively. We have

k̄U"
$U

$U!$D

$1

$1!$1!
, !13"

k̄D"
$D

$U!$D

$2

$2!$2!
, !14"

and

k1U"
$U

$U!$D

$1

$1!$1!

1
$1!$1!

, !15"

k1D"
$D

$U!$D

$2

$2!$2!

1
$2!$2!

, !16"

and kU
2 "kU, and kD

2 "kD. If we substitute the above values
in Eq. !10", we find the following expressions for the Fano
factor of the upper and lower currents:

#U"1!
2$1

$1!$1!
2
1#&

!&!2"2
, !17"

#D"1!
2$2

$2!$2!
2&

&#1

!&!2"2
, !18"

where &"($2!$2!)/($1!$1!) and 2"$D /$U . In Fig. 8 we
compare the values obtained from the analytical expressions

!17" and !18" with those from the Monte Carlo simulations,
at a temperature of 10 K. There is good quantitative agree-
ment between the two curves.
We have also investigated the behavior of the maximum

Fano factor as a function of the ratio r"RU /RD of the tun-
neling resistances. When, for instance, the voltage configu-
ration is such that the lower current exhibits a maximum
Fano factor, we have that $1 ,$1!$$2 ,$2! , and, therefore, the
condition &%2 . Thus, Eq. !17" becomes

#D#1&max#2
$2

$2!$2!

$D

$U
. !19"

According to the orthodox theory, +Eq. !1",, the transition
rate is proportional to the inverse of the tunneling resistance,
and the free-energy variation between different configura-
tions does not depend on the tunneling resistance, but only
on the capacitance and voltage values. Therefore, at given
capacitance and voltage values, we have that #D#1&max
"3r , with all the dependence on capacitances and voltages
in 3 . Taking r"1 as a reference value, we obtain

#D#1
#D
0 #1

&max"r , !20"

where #D
0 "#D(r"1). In Fig. 9!a" we have plotted the Fano

factor for different values of the ratio r. In Fig. 9!b" the
maximum Fano factor is plotted as a function of the ratio r
and is shown to be in good agreement with Eq. !20" !solid
line". We want to point out that !20" is valid in the zero-
temperature limit, while the Fano factors in Fig. 9!a" are
computed at T"10 K, thus thermal fluctuations are present.

V. CONCLUSIONS

In this paper we have investigated the shot-noise behavior
of a system of coupled quantum dots. We have carried out
our analysis by means of a Monte Carlo algorithm based on
the orthodox theory of SET’s, and of analytical methods.
We have started our numerical analysis evaluating shot

noise in a single-electron pump, where we only have sup-

FIG. 8. Comparison between the Fano factor computed with the
analytical expression !dotted line" and the result of a Monte Carlo
simulation at the temperature of 10 K !solid line".
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pression of shot noise, and we succeeded in reproducing the
honeycomb structure, well known in the current domain, us-
ing the Fano factor. At the triple points of the honeycomb
structure, shot-noise suppression is maximum !1/3 of the full
shot level" in agreement with the known literature.
Then we have analyzed shot noise in a CMDD structure

operated so that the upper and the lower pairs of dots, mak-
ing up the CMDD, were brought out of the Coulomb block-
ade at the same time. In this case we have found a significant
deviation from full shot noise and a very peculiar pattern of
the Fano factor. We have obtained both a suppression and an
enhancement of shot noise: while the suppression is a typical
behavior of SET systems, there are few examples of noise
enhancement. This enhancement is due to the correlation be-
tween the upper and the lower currents of a CMDD, as a
consequence of Coulomb interaction.

At low temperature, the transport is only due to few tran-
sitions. In this limit we have been able to carry out an ana-
lytical investigation of the Fano factor behavior, and our re-
sults are in good agreement with the Monte Carlo
simulations. With the analytical approach we have also
shown that the maximum value of the Fano factor depends
on the ratio between the upper and lower resistance values.
Several single-electron tunneling systems may exhibit

noise properties similar to those we have presented in this
paper. While suppression of shot noise is straightforward to
obtain, when electrostatic interaction regulates successive
tunneling events through a junction, we believe that the ma-
jor result of the present paper is the demonstration that shot
noise can be enhanced due to a combined effect of Coulomb
interaction and system topology. The system considered in
this paper is one of the simplest single-electron circuits ex-
hibiting such properties, and in this sense has represented an
excellent testbed for our analytical and numerical tools for
the investigation of noise. The noise behavior described in
this paper could be measured, for example, in experiments
on the silicon-on-insulator structures considered in Ref. 27.
In that case, the equivalent capacititance matrix of the sys-
tem would include additional terms due to coupling between
dots and gates, and quantum confinement within a dot would
play a role in the free energy of the system. Simulations on
that system have shown us that the enhancement and sup-
pression of show noise would be still significant and well
detectable.
Let us conclude by pointing out that in SET systems noise

plays a much more important role than in standard electronic
circuits. While in the latter noise is just a small fluctuation,
often negligible with respect to the average value, in the
former the current consists of well separated pulses, thereby
requiring, for a meaningful design, a full comprehension of
the stochastic nature of the process.
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