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Abstract
We have simulated the electronic properties of silicon–germanium electron
waveguides defined by selective etching on a SiGe heterostructure. In
particular, we have investigated the dependence of quantum confinement
and of one-dimensional subband separation on the waveguide width.
Indeed, a larger subband separation means a larger dephasing length and
larger electron mobility in the waveguide, and therefore increased
possibilities of detecting mesoscopic transport effects. Accurate modelling
of SiGe electron waveguides requires us to take into account the effect of
strain in the SiGe heterostructure and of the interface states at the exposed
SiGe surface, and to solve the Poisson–Schrödinger equation in two
dimensions. Results are also shown for a structure in which a gate electrode
is evaporated onto the SiGe waveguide, realizing a three-terminal device in
which the gate voltage is used to control the number of propagating modes,
and therefore the conductance of the channel.

1. Introduction

Silicon–germanium technology holds great promise to reduce
the cost of consumer products and help make new applications
possible. It would allow device designers to simultaneously
increase speed, reduce noise and reduce power supply
requirements. Although high-speed devices have been
fabricated with the AlxGa1−xAs/GaAs material system, a
silicon-based technology would allow integration with the
CMOS process. By using SiGe heterostructures it is possible
to realize conduction and valence band offsets for obtaining
enhanced-mobility devices.

SiGe heterojunction bipolar transistors (HBTs) have re-
cently reached the marketplace for high-frequency applica-
tions: mixers, low-power amplifiers and global position sys-
tems (GPSs). HBTs can be integrated with CMOS by in-
serting a narrow SixGe1−x (x < 0.3) base layer into a BiC-
MOS fabrication process. The SixGe1−x base may be doped
with higher densities with respect to a normal bipolar tran-
sistor and a graded Ge base may be grown in order to accel-
erate the carriers across the base. In research centres, HBTs
with fT up to 120 GHz [1] and fmax up to 150 GHz [2] have
been demonstrated, while more modest values have been ob-

tained for HBTs introduced into the market place (fT = 50–
60 GHz) [3, 4].

In contrast, SiGe field-effect transistors (HFETs) still
require significant research before marketable products may
come to fruition, even if recently the interest in high-mobility
silicon–germanium devices has been greatly increased.

As an example, silicon–germanium field effect transistors
cannot withstand the high temperature of standard CMOS
processing, which can cause diffusion of dopants and of Ge,
and the relaxation of the strained layer. A solution could be
to use a modified low-thermal-budget CMOS process with
deposited gate oxides, as indicated by Paul et al [5]. A proper
choice of the thermal budget, which would allow the activation
of impurities implanted into the ohmic contacts and in the
poly gate and avoid segregation effects, would allow us to
realize HFETs with higher transconductance than comparable
Si MOSFETs. The higher current drive at low VDS can be
attributed to the higher mobility of the strained Si channel, as
simulated by Sadek et al [6] in the case of 0.2 µm devices.

These encouraging results could be used to improve the
electrical behaviour of p-MOSFETs, which limit performance
of CMOS circuits, because the hole mobility is 2.5 times
lower than the electron mobility. Unfortunately, several
problems must be solved to fabricate silicon–germanium
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MOSFETs. The mobility improvement due to the splitting
of the conduction and valence bands is undermined by
alloy scattering and the small valence band discontinuity can
produce parallel conducting channel at small VGS , which
causes a mobility degradation for both carriers.

SiGe modulation-doped field effect transistors (MOD-
FETs) are not affected by parallel conducting channels and
have shown switching times comparable to GaAs/AlGaAs
n-MODFETs and lower power requirements with respect to the
silicon counterpart [7, 8]. These facts make the investigation
of the practical performance limits of SiGe MODFETs impor-
tant. At present, novel techniques of fabrication [9] allow us to
realize silicon–germanium quantum wires with widths down
to 15 nm.

As the dimension of the wire is shrunk, the effects of
the interface state become more and more important, simply
because they are responsible for depletion of the wire [10]. For
this reason, we need an accurate model for interface states.

In this paper we focus on the effects of interface
states and of quantization on the carrier concentration in
silicon–germanium quantum wires of different dimensions.
Furthermore, acting on the germanium concentration and on
the wire dimensions, it is possible to vary the separation
between occupied modes in the waveguide and hence to select
the number of propagating modes.

Because of the reduced dimensions of such structures,
quantum effects are very important and, in order to obtain
accurate analysis of the problems investigated, we have used a
two-dimensional simulation code based on the nested solution
of the Poisson–Schrödinger equation. The equations are
solved numerically with the Newton–Raphson algorithm, after
a discretization based on the box-integration method.

2. Model

2.1. Band alignment at the SiαGe1−α/SiβGe1−β interface

Let us consider a strained SiαGe1−α epitaxial layer deposited
onto a relaxed SiβGe1−β substrate, which imposes the lattice
constant in the plane perpendicular to the growth direction.
Let α represent the germanium mole fraction in the epi-layer
and β represent the germanium mole fraction in the substrate.
The strain in the SiαGe1−α/SiβGe1−β heterostructure, as a
consequence of the thermal and lattice mismatch between
the substrate and the epitaxial layer, affects the energy band
structure, the energy gap, the curvature at the conduction
and valence band minima and the degeneracy. Changes in
the curvature affect the carrier effective masses, mobility and
effective channel velocity. Stress causes a splitting of the
sixfold degenerate conduction band into two- and fourfold
degenerate valleys and hence leads to a preferential occupation
of conduction band minima and to reduced scattering. In
addition, the valence band degeneracy at the # point is lifted.
Heavy holes are at the valence band edge under biaxial
compressive strain (α > β); light holes are at the valence
band edge in the case of tensile strain (α < β). The
splitting of the conduction band minima and of valence band
edges has been computed in [11] by means of self-consistent
simulations based on the local density functional and ab initio
pseudopotential methods. Spin–orbit splitting effects in the
valence band are included a posteriori. The effective masses

for electron and holes are calculated in [12] by means of
nonlocal empirical pseudopotential calculations with spin–
orbit interactions, while the energy gap in the strained layer has
been derived by adding the band offsets, previously calculated,
to the gap of the relaxed layer given by [13].

2.2. Band parameters in strained SiαGe1−α alloys on
SiβGe1−β substrates

Here the procedure is described for calculating the band
alignment at the SiαGe1−α/SiβGe1−β interface. In figure 1
the band alignment at the interface between a strained layer
deposited onto a relaxed substrate is shown and the strain-
induced splitting of the conduction band minima and valence
band edges is highlighted. It is important to notice that the
procedure implemented is still valid even if the substrate is
itself strained and the lattice constant is imposed by a third
unstrained layer, but fails if the germanium mole fraction in
the substrate or in the epi-layer is larger than 0.85, because the
position of conduction band minima in the k-space is changed.

The lattice constant of the substrate, as a function of the
germanium concentration, can be expressed as [12]

ao(β) = ao(Si) + 0.200 326α(1 − β) + [ao(Ge) − ao(Si)]β2.

(1)
The epi-layer lattice constant a⊥ in the growth direction is
given by [12]

a⊥(α) = ao(α)

[
1 − 2

c12(α)

c11(α)

a‖(α) − ao(α)

ao(α)

]
(2)

where c11 and c12 are the elastic constants.
Starting from the difference, $Evav , between the weighted

averages of valence band edges at #, we have calculated the
splitting of the three valence band edges$Ev1, $Ev2 and$Ev3

as a function of α and β [11, 12]:

$Evav = (0.047 − 0.06β)(α − β) (3)

$Ev2 = 1
3$0 − 1

2δE001 (4)

$Ev1 = − 1
6$0 + 1

4δE001 + 1
2 [($0)

2

+ $0δE001 + 9
4 (δE001)

2]
1
2 (5)

$Ev3 = − 1
6$0 + 1

4δE001 − 1
2 [($0)

2

+ $0δE001 + 9
4 (δE001)

2]
1
2 (6)

where $0 [11] is the experimental spin–orbit splitting in the
unstrained material, and δE001 [11] is the linear splitting of the
multiplet.

Similarly, the splitting of the two- and fourfold conduction
band minima [11, 12] can be expressed as follows:

$Ec2 = 2
3Eu(εzz − εxx) (7)

$Ec4 = − 1
3Eu(εzz − εxx) (8)

where εii , with i = x, y, z, are the components of the
symmetric strain tensor and Eu is a deformation potential.
Hence we can calculate the discontinuity between the valence
band edges, the gap in the strained layer and finally the
discontinuity between the conduction band minima:

$Ev = $Evav − $Esub
vi + $Evi (9)
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Figure 1. Band alignment at the interface between a SiαGe1−α layer and a SiβGe1−β substrate. The figure represents the case α < β, while
the numbers in parentheses refer to the case α > β. Note that the conduction band minimum splittings are referred to the energy of the
unstrained sixfold degenerate valleys and hence #Ec4(2) and #Ec2(4) have opposite sign.

where #Esub
vi and #Evi represent the difference between the

maximum and the average valence band edge in the substrate
and in the epitaxial layer, respectively.

i = 1 (2) in the case of tensile (compressive) strain. We
have

Eg = Erelax
g + #Eci − #Evj + #Ego − #0

3
(10)

where #Ego [13] is the gap variation as a consequence of an
uniaxial strain in the growth direction and j = 2, 4 in the case
of tensile or compressive strain, respectively. Erelax

g is the
value of the energy gap known for the unstrained layer [13].
Finally

#Ec = Eg + #Ev − Esub
g . (11)

The electron effective masses are calculated as a function of α
and β [12], while we have used for holes the values known for
silicon. In particular, electron effective masses are calculated
in the following way:

ms(α, β) = [1, (α − β), (α − β)2] · W ·
[

1
(α + β)

]
(12)

where s = l, t1, t2 identifies the longitudinal and transverse
mass and W is a 3 × 2 matrix [12].

2.3. Self-consistent solution of the Poisson–Schrödinger
equation

The nonlinear Poisson equation for the electrostatic potential
$ is

∇ · (ε∇$) = −ρ[$]

= −q[−n[$] + p[$] + N+
D[$] − N−

A [$]]

(13)

where ε is the dielectric constant, q the electron charge, n and
p the electron and hole concentrations, respectively, and N+

D

and N−
A the ionized donor and acceptor concentrations.

Consider an electron in a region of dimensions Lx , Ly ,
Lz with Lx, Ly $ Lz and let us assume that the structure has
translational symmetry along the z-axis, so that all quantities
depend only on x and y.

The two-dimensional Schrödinger equation, in the case of
time-independent potential V (x, y), reads

− h̄2

2
∇ · (m−1∇'i ) + V (x, y)'i = Ei'i (14)

where 'i represents the ith eigenfunction, Ei,j is the ith
eigenenergy and m is the electron effective mass tensor in the
plane perpendicular to the direction of propagation:

m =
[

mx 0
0 my

]
. (15)

Note that we enumerate the eigenvalues Ei in ascending order
(E1 has the lowest energy, En has the highest energy, for
i = 1, . . . , n), and 'i is the corresponding eigenfunction. The
electron energy can be written as

E(i, nz) = Ei +
h̄2k2

nz

2mz

(16)

where Ei represents the eigenvalue of (14) and h̄2k2
nz/2mz is

the energy along the z-axis.
The density of states per unit of volume and energy near

a conduction band minimum is given by

N(E) =
√

2mz

πh̄

∑

i

|'i |2(E − Ei)
− 1

2 u(E − Ei). (17)
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Figure 2. Sixfold degenerate conduction band minima in Si(100)
and associated effective masses.

The Schrödinger equation must be solved three times, for each
of the three pairs of conduction band minima with identical
energy and symmetrical wavevector. In fact, as indicated in
figure 2, for each direction we have different effective masses
to consider in (14) and different masses for the calculation of
the two-dimensional density of states.

The electron concentration in the conduction band is
therefore

n = ge

√
2m1−2

z kT

πh̄

∑

i

|"1−2
i |2F− 1

2

(
Ef − E1−2

i

kT

)

+ ge

√
2m3−4

z kT

πh̄

∑

i

|"3−4
i |2F− 1

2

(
Ef − E3−4

i

kT

)

+ ge

√
2m5−6

z kT

πh̄

∑

i

|"5−6
i |2F− 1

2

(
Ef − E5−6

i

kT

)
(18)

where ge represents the degeneracy of each valley (ge = 2 in
our case), apexes of mz, "i and Ei indicate the associated pair
of conduction band minima and F−1/2 denotes the Fermi–Dirac
integral of order −1/2.

To calculate the hole concentration we solve the
Schrödinger equation for heavy holes and for light holes.
Therefore we have

p = gh

√
2mlh

z kT

πh̄

∑

i

|" lh
i |2F− 1

2

(
Elh

i − Ef

kT

)

+ gh

√
2mhh

z kT

πh̄

∑

i

|"hh
i |2F− 1

2

(
Ehh

i − Ef

kT

)
(19)

where gh is valley degeneracy (gh = 1 in our case) and lh and
hh refer to light and heavy holes, respectively.

The flow diagram of the algorithm implemented is shown
in figure 3. The two-dimensional self-consistent Poisson–
Schrödinger equation is discretized on a rectangular grid with
the box-integration method. The energy bands and the electron
and hole concentrations are calculated using the semiclassical
approximation except where differently specified.

The algorithm implemented starts from an initial guess
of the unknown potential and solves the Poisson equation
using the Newton–Raphson method. The semiclassical
solution obtained is used as the initial guess in the case
of quantum simulation. The quantum simulation requires
large memory occupancy and computing time, because of

Figure 3. Flow diagram of the algorithm implemented.

the nested Poisson/Schrödinger solution within a Newton–
Raphson cycle. In order to obtain a fast and converging
algorithm we used an approximation [14] that allowed us to
solve the Schrödinger equation as few times as possible and to
reach the solutions in a reduced number of steps.

Within a Newton–Raphson cycle eigenfunctions are
affected by small variations and hence it is possible to consider
them as constant and to solve only the nonlinear Poisson
equation. At each step, each eigenvalue is corrected by the
difference between the actual guess of the potential and the
potential with which we have solved the previous Schrödinger
equation. Hence the term Ei of equations (18) and (19)
becomes Ei − q(# − #old).

The algorithm stops when the two-norm of the difference
between the value of # at the end of two successive Newton–
Raphson cycles is smaller than a fixed value.
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Figure 4. Structure of the etched silicon–germanium quantum wire
considered in the simulation.
(This figure is in colour only in the electronic version)

2.4. Model for interface states

The states at the air–semiconductor interface are described by
a model based on two parameters, !∗ and Ds . The ‘effective
work function’ at the surface q!∗ is the energy difference
between the vacuum energy level E0 and the Fermi level EF

at the surface when the surface charge density is zero. We
make the assumption that all surface states below !∗ behave as
donors and all surface states above !∗ behave as acceptors, and
assume a uniform concentration of states per unit energy per
unit area Ds . Occupied acceptor states at the exposed surface
deplete the semiconductor in the vicinity of the surface. The
charge density Qs at the exposed semiconductor surface can
be expressed as

Qs = −qDs[EF − (E0 − q!∗)]. (20)

In the case of Ds → ∞ we have Fermi-level pinning at the
surface, that is EF in the semiconductor is pinned at the value
imposed by surface states and therefore EF = (E0 − q!∗).
We have to make the additional assumption that surface
charge is very effective in screening the electric field, and that
therefore we have vanishing electric field in the air above the
semiconductor. Such an assumption has been verified in a few
cases, and allows us to exclude from the simulation domain
the region above the semiconductor.

3. Results and discussion

First, we have studied the effects of interface states in
narrow silicon–germanium quantum wires. In particular, the
considered structure is schematically represented in figure 4.
Here, a Si layer is grown on a Si0.8Ge0.2 virtual substrate
and, because of the tensile strain imposed by the substrate, it
represents the channel in which the inversion layer will form.
The Si0.8Ge0.2 doped layer provides carriers to the channel
formation in the strained silicon layer, which can be undoped
in order to reduce impurity scattering.

The self-consistent Poisson/Schrödinger equation is
discretized onto a rectangular grid of 108 × 137 points and

Figure 5. Electron density in the Si channel in the case
Ds = 2.7 × 1013 cm−2 eV−1, W = 160 nm and !∗ = 4.4 V. The
electron concentration is calculated by solving the Schrödinger
equation in the strained Si layer.
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Figure 6. Electron density in the strained silicon channel calculated
with a semiclassical model and with a quantum model as a function
of the voltage applied to the external gate.

the electron concentration has been calculated by solving
the Schrödinger equation inside the tensile strained silicon
channel. We have computed, at a temperature of 4.2 K, the
band alignment for a width of 160 nm and observed that
electrons are confined by the discontinuity in the conduction
band "Ec, of about 122 meV, between the strained silicon
layer and the virtual substrate. The quantum electron density
is represented in figure 5, where it is shown that the electrical
waveguide width is about 95 nm, instead of 160 nm, because of
the electron depletion induced by interface states at the exposed
surfaces. Finally, we can note that, as a consequence of the
strain-induced splitting and quantum confinement, there are
only two propagating modes in the waveguide.

In order to test the screening effects of interface states and
the sensitivity of the electron channel to an external voltage,
we have surrounded the heterostructure with a metallic gate
and calculated the electron density in the channel as a function
of the applied voltage, by using first a semiclassical model and
then a quantum model. Results are shown in figure 6.

Electron density obtained with the semiclassical model is
always larger than the quantum electron density because in the
first case electrons occupy levels starting from the bottom of
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the conduction band, while in the second case available levels
start from the first eigenvalue of the Schrödinger equation.

We have calculated the quantum electron density in
waveguides of different widths and observed that the
considered value of interface state density Ds [15] induces
a quasi-Fermi-level pinning: range of variation of the Fermi
level within the gap is very small for finite density of interface
states and, as !∗ is increased, the distance between the
conduction band and the Fermi level in the semiconductor
increases and the silicon channel is progressively depleted.
Results are shown in figure 7, where the electron density is
represented as a function of !∗ and we can see that the larger
the electron waveguide, the higher the value of !∗ at which
the channel is completely depleted.

At this point we have chosen a fixed value for Ds and !∗

and calculated the electron density in the strained Si channel
as a function of the wire width. It is possible to calculate,
as a function of !∗, a sort of threshold width below which
there is no electron density in the channel, as represented
in figure 8. Indeed, when the wire is particularly thin, the
depletion induced by surface states is of primary importance
and causes the complete depletion of the channel.

In order to verify the Fermi-level pinning due to surface
states at the exposed surface we have calculated the electron
concentration in the Si channel as a function of the interface
state density. As shown in figure 9, for Ds > 1014 eV−1 cm−2

the electron density saturates because the Fermi level in the
semiconductor is pinned at a value imposed by the surface
conditions.

The use of silicon–germanium to implement high-
mobility electron devices is suggested by the consideration that

Φ*
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Figure 9. For Ds > 1014 cm−2 eV−1, the Fermi level in the
semiconductor is pinned at the value imposed by the interface states.
Hence the electron concentration in the Si channel becomes
independent of the exact value of Ds .
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Figure 10. Number of propagating modes as a function of the gate
voltage for different widths of the etched wire. For the purpose of
presentation each curve is shifted by one conductance quantum.

strain causes a splitting of the sixfold degenerate conduction
band into two- and fourfold degenerate valleys. In our
particular case, the twofold degenerate valleys are 120 meV
lower in energy than the other fourfold degenerate valleys.

In the case of tensile strain we can consider that only
the twofold valleys are occupied by electrons while the
other valleys are empty. Hence we have several inter-band
transitions forbidden, so intervalley scattering is reduced. In
the case of silicon–germanium quantum wires it is possible
to obtain an additional mobility improvement by increasing
the separation between one-dimensional subbands to suppress
inter-subband scattering. For this reason, we have investigated
the dependence of subband splitting on the waveguide width.

In figure 10 the conductance of the wire is plotted as a
function of the voltage applied to the external gate. In the
absence of magnetic field the conductance is quantized in units
of N 4e2

h
as the gate voltage is tuned, where N represents the

number of occupied subbands. The number 4 in the previous
formula is due to the contribution of both the spin degeneracy
(gs = 2) and valley degeneracy (ge = 2) [16].

As the gate voltage is tuned, it is possible to select the
number of propagating modes in the waveguide and hence to
vary the quantized conductance in the channel.

In figure 11 the one-dimensional subband separation is
plotted as a function of the waveguide width. The one-
dimensional subband separation can also be varied as a
function of the germanium concentration in the substrate: the
discontinuity "Ec between adjacent layers is responsible for
the electron confinement in the waveguide. For a waveguide
20 nm wide, we obtain a separation between the first and the

272



Quantum confinement in silicon–germanium electron waveguides

i = 3

i = 2

i = 4
i = 5

W nm

25

20

15

5

0
0 40 80 120 160 200

=E E1∆Ei1 i

10

E
ig

en
va

lu
e 

se
pa

ra
tio

n 
[m

eV
]

−

[ ]

Figure 11. In the figure, the distance between the first four occupied
modes and the first is represented as a function of the waveguide
width. In a waveguide 100 nm wide a quasi-parabolic potential
provides equally separated eigenvalues.

second subband of 10 meV, that means population mainly
in the first subband. However, it is difficult to evaluate
the improvement of mobility at room temperature, because
subband separation is still smaller than thermal energy at 300 K
(25.9 meV).

4. Conclusion

We have developed a program for the simulation of etched
silicon–germanium quantum wires, which takes into account
strain in the SiGe material system and interface states at the
exposed semiconductor surface. The program in based on the
self-consistent solution of Poisson and Schrödinger equations
in two dimensions. We have investigated the effect of surface
states, described by a simple model based on two parameters,
on the electron density in the quantum wire. Comparison with
experimental results would allow us to determine the value
of the relevant parameters. In addition, we have investigated
the subband splitting in the quantum wire, as a function of

the etched wire width. Such splitting is important to evaluate
possible mobility improvements in SiGe quantum wires with
respect to the silicon bulk, due to the strain-induced lift of the
degeneracy of conduction band minima, and to the suppression
of inter-subband scattering. Results from this model need to
be validated with experiments.
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Abstract
We have simulated the electronic properties of silicon–germanium electron
waveguides defined by selective etching on a SiGe heterostructure. In
particular, we have investigated the dependence of quantum confinement
and of one-dimensional subband separation on the waveguide width.
Indeed, a larger subband separation means a larger dephasing length and
larger electron mobility in the waveguide, and therefore increased
possibilities of detecting mesoscopic transport effects. Accurate modelling
of SiGe electron waveguides requires us to take into account the effect of
strain in the SiGe heterostructure and of the interface states at the exposed
SiGe surface, and to solve the Poisson–Schrödinger equation in two
dimensions. Results are also shown for a structure in which a gate electrode
is evaporated onto the SiGe waveguide, realizing a three-terminal device in
which the gate voltage is used to control the number of propagating modes,
and therefore the conductance of the channel.

1. Introduction

Silicon–germanium technology holds great promise to reduce
the cost of consumer products and help make new applications
possible. It would allow device designers to simultaneously
increase speed, reduce noise and reduce power supply
requirements. Although high-speed devices have been
fabricated with the AlxGa1−xAs/GaAs material system, a
silicon-based technology would allow integration with the
CMOS process. By using SiGe heterostructures it is possible
to realize conduction and valence band offsets for obtaining
enhanced-mobility devices.

SiGe heterojunction bipolar transistors (HBTs) have re-
cently reached the marketplace for high-frequency applica-
tions: mixers, low-power amplifiers and global position sys-
tems (GPSs). HBTs can be integrated with CMOS by in-
serting a narrow SixGe1−x (x < 0.3) base layer into a BiC-
MOS fabrication process. The SixGe1−x base may be doped
with higher densities with respect to a normal bipolar tran-
sistor and a graded Ge base may be grown in order to accel-
erate the carriers across the base. In research centres, HBTs
with fT up to 120 GHz [1] and fmax up to 150 GHz [2] have
been demonstrated, while more modest values have been ob-

tained for HBTs introduced into the market place (fT = 50–
60 GHz) [3, 4].

In contrast, SiGe field-effect transistors (HFETs) still
require significant research before marketable products may
come to fruition, even if recently the interest in high-mobility
silicon–germanium devices has been greatly increased.

As an example, silicon–germanium field effect transistors
cannot withstand the high temperature of standard CMOS
processing, which can cause diffusion of dopants and of Ge,
and the relaxation of the strained layer. A solution could be
to use a modified low-thermal-budget CMOS process with
deposited gate oxides, as indicated by Paul et al [5]. A proper
choice of the thermal budget, which would allow the activation
of impurities implanted into the ohmic contacts and in the
poly gate and avoid segregation effects, would allow us to
realize HFETs with higher transconductance than comparable
Si MOSFETs. The higher current drive at low VDS can be
attributed to the higher mobility of the strained Si channel, as
simulated by Sadek et al [6] in the case of 0.2 µm devices.

These encouraging results could be used to improve the
electrical behaviour of p-MOSFETs, which limit performance
of CMOS circuits, because the hole mobility is 2.5 times
lower than the electron mobility. Unfortunately, several
problems must be solved to fabricate silicon–germanium
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MOSFETs. The mobility improvement due to the splitting
of the conduction and valence bands is undermined by
alloy scattering and the small valence band discontinuity can
produce parallel conducting channel at small VGS , which
causes a mobility degradation for both carriers.

SiGe modulation-doped field effect transistors (MOD-
FETs) are not affected by parallel conducting channels and
have shown switching times comparable to GaAs/AlGaAs
n-MODFETs and lower power requirements with respect to the
silicon counterpart [7, 8]. These facts make the investigation
of the practical performance limits of SiGe MODFETs impor-
tant. At present, novel techniques of fabrication [9] allow us to
realize silicon–germanium quantum wires with widths down
to 15 nm.

As the dimension of the wire is shrunk, the effects of
the interface state become more and more important, simply
because they are responsible for depletion of the wire [10]. For
this reason, we need an accurate model for interface states.

In this paper we focus on the effects of interface
states and of quantization on the carrier concentration in
silicon–germanium quantum wires of different dimensions.
Furthermore, acting on the germanium concentration and on
the wire dimensions, it is possible to vary the separation
between occupied modes in the waveguide and hence to select
the number of propagating modes.

Because of the reduced dimensions of such structures,
quantum effects are very important and, in order to obtain
accurate analysis of the problems investigated, we have used a
two-dimensional simulation code based on the nested solution
of the Poisson–Schrödinger equation. The equations are
solved numerically with the Newton–Raphson algorithm, after
a discretization based on the box-integration method.

2. Model

2.1. Band alignment at the SiαGe1−α/SiβGe1−β interface

Let us consider a strained SiαGe1−α epitaxial layer deposited
onto a relaxed SiβGe1−β substrate, which imposes the lattice
constant in the plane perpendicular to the growth direction.
Let α represent the germanium mole fraction in the epi-layer
and β represent the germanium mole fraction in the substrate.
The strain in the SiαGe1−α/SiβGe1−β heterostructure, as a
consequence of the thermal and lattice mismatch between
the substrate and the epitaxial layer, affects the energy band
structure, the energy gap, the curvature at the conduction
and valence band minima and the degeneracy. Changes in
the curvature affect the carrier effective masses, mobility and
effective channel velocity. Stress causes a splitting of the
sixfold degenerate conduction band into two- and fourfold
degenerate valleys and hence leads to a preferential occupation
of conduction band minima and to reduced scattering. In
addition, the valence band degeneracy at the # point is lifted.
Heavy holes are at the valence band edge under biaxial
compressive strain (α > β); light holes are at the valence
band edge in the case of tensile strain (α < β). The
splitting of the conduction band minima and of valence band
edges has been computed in [11] by means of self-consistent
simulations based on the local density functional and ab initio
pseudopotential methods. Spin–orbit splitting effects in the
valence band are included a posteriori. The effective masses

for electron and holes are calculated in [12] by means of
nonlocal empirical pseudopotential calculations with spin–
orbit interactions, while the energy gap in the strained layer has
been derived by adding the band offsets, previously calculated,
to the gap of the relaxed layer given by [13].

2.2. Band parameters in strained SiαGe1−α alloys on
SiβGe1−β substrates

Here the procedure is described for calculating the band
alignment at the SiαGe1−α/SiβGe1−β interface. In figure 1
the band alignment at the interface between a strained layer
deposited onto a relaxed substrate is shown and the strain-
induced splitting of the conduction band minima and valence
band edges is highlighted. It is important to notice that the
procedure implemented is still valid even if the substrate is
itself strained and the lattice constant is imposed by a third
unstrained layer, but fails if the germanium mole fraction in
the substrate or in the epi-layer is larger than 0.85, because the
position of conduction band minima in the k-space is changed.

The lattice constant of the substrate, as a function of the
germanium concentration, can be expressed as [12]

ao(β) = ao(Si) + 0.200 326α(1 − β) + [ao(Ge) − ao(Si)]β2.

(1)
The epi-layer lattice constant a⊥ in the growth direction is
given by [12]

a⊥(α) = ao(α)

[
1 − 2

c12(α)

c11(α)

a‖(α) − ao(α)

ao(α)

]
(2)

where c11 and c12 are the elastic constants.
Starting from the difference, $Evav , between the weighted

averages of valence band edges at #, we have calculated the
splitting of the three valence band edges$Ev1, $Ev2 and$Ev3

as a function of α and β [11, 12]:

$Evav = (0.047 − 0.06β)(α − β) (3)

$Ev2 = 1
3$0 − 1

2δE001 (4)

$Ev1 = − 1
6$0 + 1

4δE001 + 1
2 [($0)

2

+ $0δE001 + 9
4 (δE001)

2]
1
2 (5)

$Ev3 = − 1
6$0 + 1

4δE001 − 1
2 [($0)

2

+ $0δE001 + 9
4 (δE001)

2]
1
2 (6)

where $0 [11] is the experimental spin–orbit splitting in the
unstrained material, and δE001 [11] is the linear splitting of the
multiplet.

Similarly, the splitting of the two- and fourfold conduction
band minima [11, 12] can be expressed as follows:

$Ec2 = 2
3Eu(εzz − εxx) (7)

$Ec4 = − 1
3Eu(εzz − εxx) (8)

where εii , with i = x, y, z, are the components of the
symmetric strain tensor and Eu is a deformation potential.
Hence we can calculate the discontinuity between the valence
band edges, the gap in the strained layer and finally the
discontinuity between the conduction band minima:

$Ev = $Evav − $Esub
vi + $Evi (9)
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Figure 1. Band alignment at the interface between a SiαGe1−α layer and a SiβGe1−β substrate. The figure represents the case α < β, while
the numbers in parentheses refer to the case α > β. Note that the conduction band minimum splittings are referred to the energy of the
unstrained sixfold degenerate valleys and hence $Ec4(2) and $Ec2(4) have opposite sign.

where $Esub
vi and $Evi represent the difference between the

maximum and the average valence band edge in the substrate
and in the epitaxial layer, respectively.

i = 1 (2) in the case of tensile (compressive) strain. We
have

Eg = Erelax
g + $Eci − $Evj + $Ego − $0

3
(10)

where $Ego [13] is the gap variation as a consequence of an
uniaxial strain in the growth direction and j = 2, 4 in the case
of tensile or compressive strain, respectively. Erelax

g is the
value of the energy gap known for the unstrained layer [13].
Finally

$Ec = Eg + $Ev − Esub
g . (11)

The electron effective masses are calculated as a function of α
and β [12], while we have used for holes the values known for
silicon. In particular, electron effective masses are calculated
in the following way:

ms(α, β) = [1, (α − β), (α − β)2] · W ·
[

1
(α + β)

]
(12)

where s = l, t1, t2 identifies the longitudinal and transverse
mass and W is a 3 × 2 matrix [12].

2.3. Self-consistent solution of the Poisson–Schrödinger
equation

The nonlinear Poisson equation for the electrostatic potential
' is

∇ · (ε∇') = −ρ[']

= −q[−n['] + p['] + N+
D['] − N−

A [']]

(13)

where ε is the dielectric constant, q the electron charge, n and
p the electron and hole concentrations, respectively, and N+

D

and N−
A the ionized donor and acceptor concentrations.

Consider an electron in a region of dimensions Lx , Ly ,
Lz with Lx, Ly & Lz and let us assume that the structure has
translational symmetry along the z-axis, so that all quantities
depend only on x and y.

The two-dimensional Schrödinger equation, in the case of
time-independent potential V (x, y), reads

− h̄2

2
∇ · (m−1∇*i ) + V (x, y)*i = Ei*i (14)

where *i represents the ith eigenfunction, Ei,j is the ith
eigenenergy and m is the electron effective mass tensor in the
plane perpendicular to the direction of propagation:

m =
[

mx 0
0 my

]
. (15)

Note that we enumerate the eigenvalues Ei in ascending order
(E1 has the lowest energy, En has the highest energy, for
i = 1, . . . , n), and *i is the corresponding eigenfunction. The
electron energy can be written as

E(i, nz) = Ei +
h̄2k2

nz

2mz

(16)

where Ei represents the eigenvalue of (14) and h̄2k2
nz/2mz is

the energy along the z-axis.
The density of states per unit of volume and energy near

a conduction band minimum is given by

N(E) =
√

2mz

πh̄

∑

i

|*i |2(E − Ei)
− 1

2 u(E − Ei). (17)
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Figure 2. Sixfold degenerate conduction band minima in Si(100)
and associated effective masses.

The Schrödinger equation must be solved three times, for each
of the three pairs of conduction band minima with identical
energy and symmetrical wavevector. In fact, as indicated in
figure 2, for each direction we have different effective masses
to consider in (14) and different masses for the calculation of
the two-dimensional density of states.

The electron concentration in the conduction band is
therefore

n = ge

√
2m1−2

z kT

πh̄

∑

i

|*1−2
i |2F− 1

2

(
Ef − E1−2

i

kT

)

+ ge

√
2m3−4

z kT

πh̄

∑

i

|*3−4
i |2F− 1

2

(
Ef − E3−4

i

kT

)

+ ge

√
2m5−6

z kT

πh̄

∑

i

|*5−6
i |2F− 1

2

(
Ef − E5−6

i

kT

)
(18)

where ge represents the degeneracy of each valley (ge = 2 in
our case), apexes of mz, *i and Ei indicate the associated pair
of conduction band minima and F−1/2 denotes the Fermi–Dirac
integral of order −1/2.

To calculate the hole concentration we solve the
Schrödinger equation for heavy holes and for light holes.
Therefore we have

p = gh

√
2mlh

z kT

πh̄

∑

i

|* lh
i |2F− 1

2

(
Elh

i − Ef

kT

)

+ gh

√
2mhh

z kT

πh̄

∑

i

|*hh
i |2F− 1

2

(
Ehh

i − Ef

kT

)
(19)

where gh is valley degeneracy (gh = 1 in our case) and lh and
hh refer to light and heavy holes, respectively.

The flow diagram of the algorithm implemented is shown
in figure 3. The two-dimensional self-consistent Poisson–
Schrödinger equation is discretized on a rectangular grid with
the box-integration method. The energy bands and the electron
and hole concentrations are calculated using the semiclassical
approximation except where differently specified.

The algorithm implemented starts from an initial guess
of the unknown potential and solves the Poisson equation
using the Newton–Raphson method. The semiclassical
solution obtained is used as the initial guess in the case
of quantum simulation. The quantum simulation requires
large memory occupancy and computing time, because of

Figure 3. Flow diagram of the algorithm implemented.

the nested Poisson/Schrödinger solution within a Newton–
Raphson cycle. In order to obtain a fast and converging
algorithm we used an approximation [14] that allowed us to
solve the Schrödinger equation as few times as possible and to
reach the solutions in a reduced number of steps.

Within a Newton–Raphson cycle eigenfunctions are
affected by small variations and hence it is possible to consider
them as constant and to solve only the nonlinear Poisson
equation. At each step, each eigenvalue is corrected by the
difference between the actual guess of the potential and the
potential with which we have solved the previous Schrödinger
equation. Hence the term Ei of equations (18) and (19)
becomes Ei − q(' − 'old).

The algorithm stops when the two-norm of the difference
between the value of ' at the end of two successive Newton–
Raphson cycles is smaller than a fixed value.
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Figure 4. Structure of the etched silicon–germanium quantum wire
considered in the simulation.
(This figure is in colour only in the electronic version)

2.4. Model for interface states

The states at the air–semiconductor interface are described by
a model based on two parameters, '∗ and Ds . The ‘effective
work function’ at the surface q'∗ is the energy difference
between the vacuum energy level E0 and the Fermi level EF

at the surface when the surface charge density is zero. We
make the assumption that all surface states below '∗ behave as
donors and all surface states above '∗ behave as acceptors, and
assume a uniform concentration of states per unit energy per
unit area Ds . Occupied acceptor states at the exposed surface
deplete the semiconductor in the vicinity of the surface. The
charge density Qs at the exposed semiconductor surface can
be expressed as

Qs = −qDs[EF − (E0 − q'∗)]. (20)

In the case of Ds → ∞ we have Fermi-level pinning at the
surface, that is EF in the semiconductor is pinned at the value
imposed by surface states and therefore EF = (E0 − q'∗).
We have to make the additional assumption that surface
charge is very effective in screening the electric field, and that
therefore we have vanishing electric field in the air above the
semiconductor. Such an assumption has been verified in a few
cases, and allows us to exclude from the simulation domain
the region above the semiconductor.

3. Results and discussion

First, we have studied the effects of interface states in
narrow silicon–germanium quantum wires. In particular, the
considered structure is schematically represented in figure 4.
Here, a Si layer is grown on a Si0.8Ge0.2 virtual substrate
and, because of the tensile strain imposed by the substrate, it
represents the channel in which the inversion layer will form.
The Si0.8Ge0.2 doped layer provides carriers to the channel
formation in the strained silicon layer, which can be undoped
in order to reduce impurity scattering.

The self-consistent Poisson/Schrödinger equation is
discretized onto a rectangular grid of 108 × 137 points and

Figure 5. Electron density in the Si channel in the case
Ds = 2.7 × 1013 cm−2 eV−1, W = 160 nm and '∗ = 4.4 V. The
electron concentration is calculated by solving the Schrödinger
equation in the strained Si layer.
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Figure 6. Electron density in the strained silicon channel calculated
with a semiclassical model and with a quantum model as a function
of the voltage applied to the external gate.

the electron concentration has been calculated by solving
the Schrödinger equation inside the tensile strained silicon
channel. We have computed, at a temperature of 4.2 K, the
band alignment for a width of 160 nm and observed that
electrons are confined by the discontinuity in the conduction
band $Ec, of about 122 meV, between the strained silicon
layer and the virtual substrate. The quantum electron density
is represented in figure 5, where it is shown that the electrical
waveguide width is about 95 nm, instead of 160 nm, because of
the electron depletion induced by interface states at the exposed
surfaces. Finally, we can note that, as a consequence of the
strain-induced splitting and quantum confinement, there are
only two propagating modes in the waveguide.

In order to test the screening effects of interface states and
the sensitivity of the electron channel to an external voltage,
we have surrounded the heterostructure with a metallic gate
and calculated the electron density in the channel as a function
of the applied voltage, by using first a semiclassical model and
then a quantum model. Results are shown in figure 6.

Electron density obtained with the semiclassical model is
always larger than the quantum electron density because in the
first case electrons occupy levels starting from the bottom of
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the conduction band, while in the second case available levels
start from the first eigenvalue of the Schrödinger equation.

We have calculated the quantum electron density in
waveguides of different widths and observed that the
considered value of interface state density Ds [15] induces
a quasi-Fermi-level pinning: range of variation of the Fermi
level within the gap is very small for finite density of interface
states and, as '∗ is increased, the distance between the
conduction band and the Fermi level in the semiconductor
increases and the silicon channel is progressively depleted.
Results are shown in figure 7, where the electron density is
represented as a function of '∗ and we can see that the larger
the electron waveguide, the higher the value of '∗ at which
the channel is completely depleted.

At this point we have chosen a fixed value for Ds and '∗

and calculated the electron density in the strained Si channel
as a function of the wire width. It is possible to calculate,
as a function of '∗, a sort of threshold width below which
there is no electron density in the channel, as represented
in figure 8. Indeed, when the wire is particularly thin, the
depletion induced by surface states is of primary importance
and causes the complete depletion of the channel.

In order to verify the Fermi-level pinning due to surface
states at the exposed surface we have calculated the electron
concentration in the Si channel as a function of the interface
state density. As shown in figure 9, for Ds > 1014 eV−1 cm−2

the electron density saturates because the Fermi level in the
semiconductor is pinned at a value imposed by the surface
conditions.

The use of silicon–germanium to implement high-
mobility electron devices is suggested by the consideration that
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Figure 9. For Ds > 1014 cm−2 eV−1, the Fermi level in the
semiconductor is pinned at the value imposed by the interface states.
Hence the electron concentration in the Si channel becomes
independent of the exact value of Ds .
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strain causes a splitting of the sixfold degenerate conduction
band into two- and fourfold degenerate valleys. In our
particular case, the twofold degenerate valleys are 120 meV
lower in energy than the other fourfold degenerate valleys.

In the case of tensile strain we can consider that only
the twofold valleys are occupied by electrons while the
other valleys are empty. Hence we have several inter-band
transitions forbidden, so intervalley scattering is reduced. In
the case of silicon–germanium quantum wires it is possible
to obtain an additional mobility improvement by increasing
the separation between one-dimensional subbands to suppress
inter-subband scattering. For this reason, we have investigated
the dependence of subband splitting on the waveguide width.

In figure 10 the conductance of the wire is plotted as a
function of the voltage applied to the external gate. In the
absence of magnetic field the conductance is quantized in units
of N 4e2

h
as the gate voltage is tuned, where N represents the

number of occupied subbands. The number 4 in the previous
formula is due to the contribution of both the spin degeneracy
(gs = 2) and valley degeneracy (ge = 2) [16].

As the gate voltage is tuned, it is possible to select the
number of propagating modes in the waveguide and hence to
vary the quantized conductance in the channel.

In figure 11 the one-dimensional subband separation is
plotted as a function of the waveguide width. The one-
dimensional subband separation can also be varied as a
function of the germanium concentration in the substrate: the
discontinuity $Ec between adjacent layers is responsible for
the electron confinement in the waveguide. For a waveguide
20 nm wide, we obtain a separation between the first and the
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Figure 11. In the figure, the distance between the first four occupied
modes and the first is represented as a function of the waveguide
width. In a waveguide 100 nm wide a quasi-parabolic potential
provides equally separated eigenvalues.

second subband of 10 meV, that means population mainly
in the first subband. However, it is difficult to evaluate
the improvement of mobility at room temperature, because
subband separation is still smaller than thermal energy at 300 K
(25.9 meV).

4. Conclusion

We have developed a program for the simulation of etched
silicon–germanium quantum wires, which takes into account
strain in the SiGe material system and interface states at the
exposed semiconductor surface. The program in based on the
self-consistent solution of Poisson and Schrödinger equations
in two dimensions. We have investigated the effect of surface
states, described by a simple model based on two parameters,
on the electron density in the quantum wire. Comparison with
experimental results would allow us to determine the value
of the relevant parameters. In addition, we have investigated
the subband splitting in the quantum wire, as a function of

the etched wire width. Such splitting is important to evaluate
possible mobility improvements in SiGe quantum wires with
respect to the silicon bulk, due to the strain-induced lift of the
degeneracy of conduction band minima, and to the suppression
of inter-subband scattering. Results from this model need to
be validated with experiments.
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