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Abstract
We present results from a detailed simulation of InAs quantum dots
embedded in an AlGaAs/GaAs heterostructure with a self-consistent
three-dimensional solver of the Poisson–Schrödinger equation based on
density functional theory and local density approximation. Single-electron
effects in the structure are evaluated by computing the electrochemical
potential by means of Slater’s transition rule. We have evaluated the effect
of strain in the InAs dot on the single-electron charging properties of the
system, to assess the importance of including strain in the design of
single-electron memories based on self-organized quantum dots.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Stranski–Krastanov growth enables the fabrication of quantum
dots whose size, density, and shape can be controlled with
reasonable accuracy through growth temperature, flux ratios,
and growth rates. In addition, the quantum dots obtained
exhibit clean electronic and optical properties as a result of
the strong quantum confinement in three dimensions.

Here, we are mainly interested in the single-electron
properties of InAs dots, for assessing the possibility of using
layers of self-organized quantum dots as a storage medium for
non-volatile memory applications. Recent experiments on the
AlGaAs/GaAs material system have shown preliminary, but
interesting prospects for such applications [1–5].

A high-electron-mobility transistor (HEMT) with a layer
of self-organized dots embedded between the gate and the two-
dimensional electron gas can store information represented
by the threshold voltage shift of the HEMT caused by the
charge trapped in the dots. These memories are programmed
by applying to the gate a positive voltage of a few volts
that lowers the thin high-gap-material conduction band and
enhances tunnelling of electrons from the channel to the dots.
The small amount of charge involved in the program operation
would allow for low power consumption, and short write–erase
times.

In order to determine the most promising structures on
the basis of physical simulations, we have developed a three-
dimensional Poisson–Schrödinger solver [6] based on density
functional theory and the local density approximation (DFT-
LDA), with the focus on single-electron charging of the dots,
rather than on optical properties.

2. Model

In order to reduce the computational resources required we
consider a simplified situation in which we have a regular two-
dimensional array of InAs dots embedded in an Al0.2Ga0.8As
layer as shown in figure 1(a). In this way, we can focus on
a simulation domain containing only one dot, and enforce
periodic boundary conditions by setting to zero the component
of the electric field orthogonal to the lateral faces of the
simulation domain. As we can see in figure 1(b), the simulation
domain contains a single lens-shaped InAs dot embedded in
a 20 nm layer of Al0.2Ga0.8As. The layer structure consists
of a GaAs substrate with unintentional acceptor concentration
of 1015 cm−3, a 20 nm layer of Al0.2Ga0.8As in which a lens-
shaped InAs dot is embedded (with a height of 2 nm and a base
diameter of 20 nm), an n-doped 40 nm layer of Al0.2Ga0.8As,
and finally a 10 nm GaAs cap layer. A metal gate is evaporated
onto the top surface. The substrate is grounded.
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Figure 1. (a) The AlGaAs/GaAs heterostructure considered with a
regular 2D array of InAs quantum dots; (b) the simulation domain
containing only one dot.

We have performed a detailed simulation based on
the self-consistent solution of the Poisson–Schrödinger
equation on a three-dimensional grid with the DFT-LDA: the
Poisson–Schrödinger equation is discretized with the box-
integration method [7] and solved with the Newton–Raphson
algorithm [8].

The potential profile in our domain is determined by the
Poisson equation:

∇ · (ε ∇φ) = −ρ, (1)

where φ is the scalar potential, ε the dielectric constant, and ρ

the charge density, which is given by the following expression:

ρ(r) = q[p(r) − n(r) + N+
D(r) − N−

A (r)] (2)

where p and n are the hole and electron densities, N+
D and N−

A

are the concentrations of the ionized donors and acceptors,
respectively, whose expressions are given, for example, in [9].
While the electron and hole concentrations in the substrate are
computed with the semiclassical approximation [9], electrons

in the dot are strongly confined, and therefore their density
must be computed by solving the Schrödinger equation with
the DFT:

[
− h̄2

2
∇ ·

(
1
m

∇
)

+ V (r)

]
$(r) = E$(r), (3)

where the potential term is V (r) = Ec(r) + Vex(r), m is the
effective mass, Ec is the conduction band (Ec(r) = Ec(r =
0) − qφ(r)), and Vex is the exchange–correlation potential in
the LDA [10]:

Vex(r) = − q2

4π2ε0εr

(3π3n(r))1/3. (4)

Once the single-particle eigenfunctions $i and the correspond-
ing eigenvalues Ei are obtained, the electron density corre-
sponding to a given number N of electrons in the dot can be
readily obtained as

n(r) =






N/2∑

i=1

2|$i (r)|2, if N is even

(N−1)/2∑

i=1

2|$i (r)|2 + |$[(N+1)/2](r)|2,

if N is odd

(5)

under the assumption that the electron density in the dot is not
appreciably different from that in the ground state. We have
implemented a self-consistent algorithm: after we solve the
Schrödinger equation we put the quantum expression for the
electron density in the dot into the Poisson equation, while we
use a semiclassical expression in the rest of the domain. The
non-linear Poisson equation is then solved with the Newton–
Raphson algorithm. The potential profile obtained is then
used to solve the Schrödinger equation again in the quantum
domain. This is repeated until the two-norm of the difference
between two consecutive solutions for the potential at the end
of each complete Newton–Raphson scheme is smaller than
25 µV × number of grid points.

3. Results

In figure 2 we show the single-electron eigenfunctions obtained
from the solution of the Schrödinger equation. In particular,
figure 2(a) is an isosurface plot of the first eigenfunction for
|$1(r)|2 = 3×1023 m−3; figures 2(b) and (c) show the second
and third eigenfunctions for |$(r)|2 = 4×1024 m−3. The light
grey area is the confining dot. Because of the symmetry of the
dot, we observe that the second and third eigenfunctions are
degenerate and have the same shape rotated by 90◦.

In figure 3 we show the isosurface plot of the electron
density in the dot and in the two-dimensional electron gas
(n = 1017 cm−3) for nine electrons in the dot and an applied
voltage of −1.5 V on the top gate.

As can be seen, the charge in the dot shields the electric
field and reduces the electron density in a region below the dot
(the hole in the picture). In figure 4 the same electron density
in the y–z plane is shown for x = 25 nm.

In figure 5 we plot the conduction band profile on the y–z

plane for x = 25 nm, with an applied gate voltage of −1.5 V
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Figure 2. Isosurface plots of the first three eigenfunctions: (a) first
eigenfunction; (b), (c) two eigenfunctions related to the second and
third degenerate eigenvalues.

Figure 3. An isosurface plot of the electron density in the dot and in
the bottom channel (n = 1017 cm−3). The voltage applied to the top
gate is Vg = −1.5 V and the number of electrons in the dot is nine.

and with nine electrons in the dot: the quantum dot causes a
confining potential about 1 eV deep, arising from the difference
in electron affinity between the InAs dot and the Al0.2Ga0.8As
layer.
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Figure 4. A surface plot of the electron density on a y–z plane
passing through the centre of the dot (x = 25 nm), with
nine electrons in the dot.
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Figure 5. A surface plot of the conduction band on a y–z
cross-plane, with nine electron in the dot; Vg = −1.5 V. The step in
the conduction band of about 0.6 eV defines the quantum confined
region.
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Figure 6. The electrochemical potential for 1–9 electrons in the dot:
the plot shows the odd–even pairing.

As far as the charging energies are concerned, in figure 6
we show the electrochemical potential as a function of the
number of electrons in the InAs dot. The electrochemical
potential is computed with Slater’s transition rule as µ(N) =
EN−1/2, where EN−1/2 is the highest occupied eigenvalue of
the system with N − 1/2 electrons, computed with DFT. The
plot shows the electrochemical potential computed with 1–9
electrons in the dot. The odd–even pairing of the energies
of each electron can be noted; from this plot we can see
that the charging energy is close to 20 meV, corresponding
to a capacitance of 4 aF, and the energy due to quantum
confinement is about 150 meV. Figure 7, in contrast, shows
how the conduction band increases for the number of electrons
in the dot ranging from 1 to 9.
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Figure 7. The conduction band for increasing numbers of electrons
in the dot (from 1 to 9).

3.1. Strain effects

Self-assembled InAs dots present significant lattice mismatch
that causes a high degree of strain. It is therefore important to
quantitatively evaluate its effect on the electrical characteristics
of the dot. On the basis of previous studies on the strain
component in heterostructures in the presence of InAs dots
[11–13], we have devised a simplified approach. If we
consider the results obtained by the cited studies for the strain
tensor with both the continuum elasticity and atomistic valence
force field approach [12], we can observe that the hydrostatic
component of the strain in the dot is almost constant with a
value between 7 and 9%. In our work we want to overestimate
the effects of strain and have considered a value of 10% for
the hydrostatic component, while for the points outside the dot
we have considered zero strain, consistently with the above-
mentioned papers. With this approximation, we have added
to the potential energy in the Schrödinger equation a term that
takes into account the effect of strain in the dot. In particular
we have

Ec(r) = Ec(r)0 + ac(r) Tr[ε(r)] (6)

where Ec(r)0 is the conduction band without strain, ac is
the deformation potential of the material under hydrostatic
deformation, and ε(r) is the position-dependent strain tensor.
For the conduction band we have considered only the
hydrostatic component of the strain. The result is shown in
figure 8, where both the conduction band and the single-particle
eigenvalues with and without strain are shown on the same plot:
we can note that the models considered for the strain produce
a translation of the energies of about 0.6 eV.

4. Conclusions

We have presented a program for the three-dimensional
simulation of the single-electron properties of self-assembled
InAs dots in an AlGaAs/GaAs heterostructure. Our purpose-
built Poisson–Schrödinger solver enables us to compute the
electronic structure of quantum dots and their electrochemical
potential, and is a powerful tool for tuning the layer structure
in order to optimize the electric properties of the quantum dot
layer for non-volatile memory applications. The approach
presented here basically has two important limitations: the
treatment of strain is very approximate and the effective-
mass approach is too crude an approximation for nanometre-
size InAs dots. A detailed approach, based on the ab
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Figure 8. The conduction band and single-particle eigenvalues for
the dot obtained considering strain effects (solid lines) and with no
strain (dashed lines). The deformation potential is ac = −5 eV, and
the hydrostatic component of strain in the dot is 10%.

initio calculation of the complete band structure in the
strained system, would be required for reproducing the optical
properties of the dots, but would have a much smaller impact
as regards their electrical properties. In addition, a very
complex and accurate model could be deemed excessive, given
the present lack of knowledge of experimental parameters
such as the exact size, shape, and position for the dots. A
systematic investigation aimed at the computer-aided design of
non-volatile memory structures in the AlGaAs/GaAs material
system, based on the code presented in this paper, is currently
in progress.
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