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Abstract. In this paper we describe the effects of quantum confinement and ballistic transport in the channel on
the dispersion of threshold voltage due to the discrete distribution of dopants. To this aim, a recently developed
3D Poisson-Schrödinger solver is used, along with a 2D solver of ballistic transport. The Schrödinger equation
is solved with density functional theory, in the local density approximation. Results on statistically meaningful
ensembles of devices show that both ballistic transport and quantum confinement lead to an increase of threshold
voltage dispersion.

Keywords: MOSFETs, atomistic effects, quantum modeling, ballistic transport

1. Introduction

CMOS feature sizes have by now reached the sub-
100 nm regime, and in the 2007 25 nm channel length
transistors are going to be produced, as foreseen by
the ITRS’01. In this perspective, from a design point
of view, a modern device simulator needs to address
typical aspects of nanoscale transport: “atomistic” dis-
tribution of dopants, quantum confinement of carriers
and far from equilibrium transport in the channel.

In MOSFET devices of the latest technology node,
the number of impurities in the depletion region is of
the order of hundreds, therefore intrinsic fluctuations
of the number and of the position of impurities strongly
influence the value of the threshold voltage. This has
been proven experimentally in a pioneering work by
Mizuno [1], and investigated from the theoretical point
of view by means of simulations [2–4], and by ana-
lytical models [5–8]. On the other hand, a quantita-
tively accurate investigation of the threshold voltage
dispersion requires the use of quantum models, in or-
der to take into account the threshold voltage shift due
to the increased confinement of electrons in the channel
[6,9].

Moreover, already in 0.13 µm MOSFETs, a signifi-
cant fraction of electrons traverse the channel without
energy loss and with conservation of transversal mo-

mentum [10]. In this perspective, accurate simulations
need to consider the ballistic fraction of electrons con-
tributing to transport.

We have developed a three dimensional Poisson-
Schrödinger solver based on density functional theory,
with local density approximation. This code allows us
to study all the above mentioned effects. In particular
we focus our attention on a 50 nm MOSFET with uni-
form doping in the bulk, for which comparable data
on threshold voltage dispersion, based on semiclassi-
cal models or on density gradient approximations, are
available [3,4].

2. Results

We have solved the self-consistent Poisson-
Schrödinger equation in the three-dimensional
domain in order to take into account quantum confine-
ment of electrons in the channel. Because quantum
confinement is predominant along the direction per-
pendicular to the Si/SiO2 interface (x axis), we have
decoupled the Schrödinger equation into two parts,
one along the x axis and one in the y-z plane: discrete
energy levels appear along x , while a semiclassical
expression correctly approximates the in-plane states
because of the negligible confinement. In this way
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an excessive computational burden is avoided, intro-
ducing only a negligible error [11]. The equations
have been discretized by means of the box-integration
method over a rectangular grid and the nonlinear
system has been solved iteratively with the Newton-
Raphson method with the predictor/corrector approach
described in [12].

The simulated structure is a n-MOSFET with chan-
nel length of 50 nm, gate oxide thickness of 3 nm and
doping concentration NA = 5 × 1018 cm−3.

First, we need to adopt a definition of threshold volt-
age. In particular, we define the threshold voltage as the
intercept with the voltage axis of the line that provides
the best fit of the transfer characteristics at low VDS in
the strong inversion region.

Such characteristics are computed in the limit of
fully ballistic transport, with a model widely explained
in our previous work [13], and in the case of drift-
diffusion transport, from the conductance obtained by
solving a simplified continuity equation [3]. In 50 nm
devices a significant fraction of electrons traverse the
channel without energy loss, so the transport regime
should be intermediate between the two considered
cases.

Both approaches, however, are too computationally
demanding to be used in statistical simulations, there-
fore we use a simplified method, consisting in extract-
ing VT from the intercept of the fitting line of the curve
representing the charge integrated in a region in the
channel as a function of VG .

Figure 1 show the threshold voltage computed by
means of the ballistic and the simplified drift/diffusion
model (straight lines) and the threshold voltage ob-
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Figure 1. Threshold voltage extracted by the charge plot computed in a region of dimension 50 × 50 × δ nm3, by ballistic and simplified
drift/diffusion models (left). Comparison between charge in region 50 × 50 × δ nm3 and quasi equilibrium or ballistic current (right).

tained computing the charge in the channel (diamonds)
as a function of the width of the region of integration in
the channel direction. As it can be noticed, the length
of the intervals centered in the middle of the channel
equal to 26 nm and 40 nm fit well the ballistic and the
quasi-equilibrium threshold voltage, respectively. In-
deed, in case of the ballistic model, only the carriers
very close to the maximum of the subband contribute
to the current, while in the drift/diffusion model, all
regions of the channel contribute equally to channel
conductance.

The above described threshold voltage extraction
procedure has been used to compute the threshold volt-
age statistics, performing simulations over 100 devices
with the same nominal doping profile, but with differ-
ent atomistic distribution. The random dopant profile
has been generated by assuming a Poisson distribu-
tion with average equal to the number of atoms in the
Voronoi cell. Moreover, in order to obtain a random
dopant distribution with at most one dopant atom con-
tained in each cell, we have chosen a grid with a max-
imum spacing of 1 nm.

Figure 2 shows the quantum and semiclassical
threshold voltage standard deviation as a function of
the doping concentration in the bulk, in the quasi-
equilibrium case. As expected, the standard deviation
computed semiclassically (σsc) is smaller than that
computed by means of quantum models (σQ), since
the threshold voltage standard deviation is a rising
monotonic function of the oxide thickness, which is
effectively increased by quantum confinement. For the
same reason, we can notice that the two curves are al-
most shifted. Indeed, as the carrier centroid along the
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Figure 2. Semiclassical and quantum standard deviation computed
with the simplified drift/diffusion model as a function of the doping
concentration. Standard deviation computed in [3–5] and in [7] are
also shown.

vertical direction varies in the range of 1 ÷ 1.3 nm as
the doping factor is varied, the percentage increase of
the oxide thickness is about 13.5%, that in the semilog
plot corresponds to a shift of approximately 55×10−2.

In Fig. 2 are also shown semiclassical and quantum
results obtained in [3,4] and those derived by the ana-
lytical model described in [5,7]. As can be noticed, our
results differ from results in [3,4], and this is probably
due to the different definition of threshold voltage. In-
deed, while in our case the threshold voltage is defined
in deep inversion, in the case of [3] the threshold voltage
is defined as the gate voltage at which the source-to-
drain current is equal to 10−8 A, i.e., in weak inversion
or in subthreshold conditions, where random percolat-
ing paths may have a role in increasing the dispersion
of threshold voltage.

Semiclassical simulations are instead in very good
agreement with the analytical expression based on a
simple 1D model [7], since the dispersion of VT de-
pends in practice only on the vertical distribution of
dopants and also because in the considered devices
charge sharing effects are negligible: indeed, simula-
tions performed on a MOS structure with the same
doping yield a threshold voltage that differs from that
of the MOSFET only by 30 mV.

In Fig. 3 the standard deviation is plotted as a func-
tion of doping, in case of ballistic and quasi-equilibrium
simulations of threshold voltage. In this way it is possi-
ble to define an upper and a lower limit for the standard
deviation of VT , depending on the degree of ballistic
transport. In particular, considering quantum effects,
the device should belong to the highlighted region of
Fig. 3.

Figure 3. Semiclassical and quantum threshold voltage standard
deviation computed with the simplified drift/diffusion and ballistic
model.

From simulations it has also been possible to obtain
an interesting relation between the random variables
VTQ and VTsc, i.e., the threshold voltages computed with
quantum and semiclassical models, respectively. In par-
ticular, the two random variables are strictly correlated
(the correlation factor is always larger than 0.997 for all
simulated devices), and a linear relation can be found
for them: VTQ = mVTsc + q (Fig. 4).

In Table 1 the best fitting values of m are compared
with the ratio σQ

Qsc
for both the ballistic and the quasi

equilibrium case, and are practically identical, suggest-
ing that charge centroid and quantum capacitance are
responsible for the difference between σQ and σsc.

Since results derived from analytical formulae and
semiclassical simulations are in good agreement, and
since quantum and semiclassical threshold voltages are
linearly dependent, in case of reduced charge sharing
effects, the above shown results suggest a simple way
to correct the semiclassical expression for the thresh-
old voltage dispersion, in order to include quantum
effects.

Figure 4. Scatter plot of the threshold voltage computed by means
of quantum model versus semiclassical threshold voltage.
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Table 1. Ratio between quantum and semiclassical stan-
dard deviation of the threshold voltage (σQ and σsc, respec-
tively) derived from simulations and from the scatter plot.

Ballistic Quasi equilibrium

Doping factor m σQ
σsc

m σQ
σsc

1.0 1.253 1.256 1.196 1.196

0.8 1.18 1.183 1.163 1.164

0.6 1.159 1.16 1.164 1.166

0.4 1.158 1.16 1.162 1.172

0.2 1.16 1.162 1.172 1.146

3. Conclusion

We have developed a three-dimensional Poisson-
Schrödinger solver that takes into account at the same
time the effects of the discrete distribution of dopants
and of the quantum confinement in the channel on the
threshold voltage.

The threshold voltage standard deviation computed
by means of quantum models is larger than that com-
puted semiclassically, due to the increase of the effec-
tive oxide thickness.

Moreover, performed simulations have shown that
also ballistic transport in the channel increases the dis-
persion of the threshold voltage. In particular, fluctua-
tions of VT in the case of ballistic transport depend on
fluctuations of the subband maximum, that are mainly
due to fluctuations of the impurity number in a small

volume in the central region of the device (at small
drain voltage).

Quantum confinement has on the standard deviation
of VT an effect that is shown to be strongly correlated
to that on VT , and is basically due to the inversion layer
capacitance.
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