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NANOTCAD2D: Two-dimensional code for the simulation
of nanoelectronic devices and structures q

G. Curatola *, G. Iannaccone

Dipartimento di Ingegneria dell’Informazione, Universit!aa degli studi di Pisa, Via Diotisalvi 2, I-56122 Pisa, Italy

Abstract

In this paper we present NANOTCAD2D, a code for the simulation of the electrical properties of semiconductor-
based nanoelectronic devices and structures in two-dimensional domains. Such code is based on the solution of the
Poisson/Schr€oodinger equation with density functional theory and of the continuity equation of the ballistic current.
NANOTCAD2D can be applied to structures fabricated on III–IV, strained-silicon and silicon–germanium hetero-
structures, CMOS structures, and can easily be extended to new materials. In particular, in the case of SiGe hetero-
structures, it includes the effects of strain on the energy band profiles. The effects of interface states at the air/
semiconductor interfaces, particularly significant in the case of devices obtained with selective etching, are also properly
taken into account.
! 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The electrical properties of nanoscale semicon-
ductor devices and structures are typically deter-
mined by quantum confinement, that strongly
affects the density of states of electrons and holes,
and by ballistic transport, that takes place if device
length is smaller than the scattering length.

An efficient simulation tool, aimed at under-
standing device behavior and at designing opti-

mized structures, must therefore include such
aspects, and achieve at the same time a reasonable
trade-off between efficiency and accuracy.

Here we present NANOTCAD2D, a program
for the simulation of nanoelectronic semiconduc-
tor devices, based on the self-consistent solution of
Poisson/Schr€oodinger equation and of the conti-
nuity equation for electrons and holes in the case
of ballistic transport. The program allows to
consider quantum confinement in one or two di-
mensions, and to address more complex structures
that can be divided into regions in which different
types of confinement are present.

NANOTCAD2D is oriented at two main clas-
ses of devices: (i) quantum wires, i.e., structures
with translation symmetry in one direction, that
are completely described by the geometry of the
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cross section; (ii) ballistic field effect devices, again
with translation symmetry in a direction perpen-
dicular to that of electron motion.

Ballistic transport is simply included by as-
suming that the occupation factor of states in-
jected from a given reservoir is that of the reservoir
itself, i.e., obeys Fermi–Dirac distribution with
reservoir!s Fermi energy.

In addition, the code implements a simplified
model for localized states at the semiconductor
surface exposed to air. Indeed, the depletion of a
one-dimensional or a two-dimensional electron gas
(1DEG or 2DEG) due to acceptor-like surface
states is of primary importance in determining the
electrical properties of narrow quantum wires or
structures with large exposed surfaces.

At present, the code allows to consider common
semiconductor materials, such as silicon, AlGaAs,
InGaAs, strained silicon and silicon germanium.
In the case of silicon germanium, in particular, we
have developed a procedure for taking into ac-
count the effect of strain caused by different lattice
constants on the band structure [1].

The paper has the following structure: in Sec-
tion 2 we describe the physical model implemented
in the code; in Section 3 we discuss the numerical
aspects of the algorithms. In Section 4 simulation
examples are presented and in Section 5 the con-
clusions.

2. Physical model

The density of states for electron and holes de-
pends on the degree of quantum confinement in the
different device regions. There are three possibili-
ties: If quantum confinement is strong in both di-
rections, the density of states is obtained by solving
the two-dimensional Schr€oodinger equation. If
quantum confinement is strong only in one direc-
tion (say, x) the density of states is written as a sum
of two-dimensional subbands, the edges of which
are obtained by solving the Schr€oodinger equation
in the x direction for each mesh point along the y
axis. If confinement can be considered very weak,
the density of states of the bulk material is used.

For materials with degenerate or quasi-degen-
erate minima in the conduction band, such as for

example silicon, that has six degenerated minima,
the density of states is computed with the effective
mass approximation for each minimum, taking
into account mass anisotropy. The same procedure
is applied to degeneracy of valence band maxima.

In the following, we will discuss in some detail
the expressions for the density of states and carrier
density considering only one band valley, for
simplicity of notation. Extension to multiple val-
leys is straightforward.

2.1. Charge density for two-dimensional quantum
confinement (1DEG–1DHG)

Let us consider a region where the confinement
for electrons is strong in both x and y directions. In
such a case, the local density of states per unit of
volume and energy near a conduction band mini-
mum is given by:

N1DðE; x; yÞ ¼
ffiffiffiffiffiffiffiffi
2mz

p

p#h
$
X

i

jWiðx; yÞj2

$ðE % EiÞ%
1
2uðE % EiÞ; ð1Þ

where uðE % EiÞ is the Heavyside function, Wi is
the solution of the Schr€oodinger equation in two
dimensions, i.e.,

% #h2

2mx

o2

ox2
Wi %

#h2

2my

o2

oy2
Wi þ Ecðx; yÞWi ¼ EiWi;

ð2Þ

Ei is the corresponding eigenvalue, Ec is the con-
duction band, ms, s ¼ x, y, z is the effective mass in
the direction denoted by the pedix, #h is the reduced
Planck!s constant. At this point, by integrating the
density of states multiplied by the Fermi–Dirac
occupation factor, the quantum electron density
can be expressed as:

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mzkBT

p

p#h

X

i

jWij2F%1
2

Ef % Ei

kBT

" #
; ð3Þ

where F%1=2 is the Fermi–Dirac integral of order
)1/2 and Ef is the Fermi energy [2].

In order to compute the hole concentration we
have to solve Schr€oodinger equation for heavy holes
and for light holes. Therefore, the conduction
band in (2) is substituted by the inverted valence
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band %Evðx; yÞ and the eigenvalues %Eh
i , are ob-

tained.
Therefore the hole concentration p becomes:

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mh

z kBT
p

p#h

X

i

jWij2F%1
2

Eh
i % Ef

kBT

" #
; ð4Þ

where mh
z is the effective mass for holes in the z

direction.

2.2. One-dimensional quantum confinement: two-
dimensional electron or hole gas (2DEG–2DHG)

In the case of strong confinement in only one
direction (for example along the x axis), we assume
that the density of states can be decomposed in a
quantum term along the direction of confinement
and a semiclassical term in the other directions.
The one-dimensional Schr€oodinger equation for
electrons in the x direction for a mesh point y can
be written as:

% #h2

2mx

o2

ox2
Wi þ Ecðx; yÞWi ¼ EiðyÞWi: ð5Þ

As a consequence, the available states for elec-
trons are grouped into two-dimensional subbands
and the density of states can be expressed as fol-
lows:

N2DðE; x; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffimymz

p

2p#h2
X

i

jWiðx; yÞj2uðE % EiðyÞÞ:

ð6Þ

The electron density therefore is:

n ¼
kBT

ffiffiffiffiffiffiffiffiffiffiffimymz
p

p#h2
X

i

jWij2 ln 1

$
þ exp

Ef % Ei

kBT

" #%
:

ð7Þ

Similar considerations apply to holes.

2.3. Effects of surface states

In the simulation of narrow semiconductor de-
vices obtained with selective etching, the effects of
states at the exposed surface are very important
and must be taken into account in order to re-
produce with accuracy the experimental results. In
particular, these states can act as donors or ac-

ceptors and hence deeply affect the carrier distri-
bution in the device.

In order to correctly model the phenomenon,
we have used a simple model based on two pa-
rameters that is typically applied to metal-semi-
conductor contacts [3] and has been recently
validated for air-semiconductor interfaces [4].

The two parameters are the density of interface
states per unit energy per unit area DS [eV

%1 cm%2]
and the energy difference U' between the vacuum
level E0 and the Fermi energy that ensures a neu-
tral charge at the interface. States with energy
below E0 % U' are donors and states with higher
energy are acceptors.

Surface charge per unit surface can then be
expressed as Qs ¼ %qDS½Ef % ðE0 % U'Þ), where %q
is the electron charge.

2.4. Poisson equation

All charge concentrations considered represent
the source term of the two-dimensional Poisson
equation:

r * ð!rUÞ ¼ %q½U)
¼ %q½%n½U) þ p½U) þ Nþ

D ½U)
% N%

A ½U) þ qs½/)); ð8Þ

where ! is the dielectric constant, q is the electron
charge, qs is the term of surface charge per unit
volume, Nþ

D and N%
A the ionized donor and ac-

ceptor concentrations, respectively [3]. Energy
bands depend on the potential as:

Ecðx; yÞ ¼ Ecðx; yÞjU¼0 % qUðx; yÞ;
Evðx; yÞ ¼ Evðx; yÞjU¼0 % qUðx; yÞ:

ð9Þ

Potential and charge density profiles in equi-
librium are computed by solving the set of non-
linear partial differential equations described
above. The case of ballistic transport is examined
in the next section.

2.5. Ballistic transport for electrons and holes

When carriers are injected into a semiconductor
device, they are likely to be scattered by a number
of possible sources, including acoustic and optical
phonons, ionized impurities, defects, interfaces
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and other carriers. If, however, device length is
smaller than the mean free path it is very likely for
carriers to traverse the device without suffering
scattering events. Our code includes this type of
‘‘ballistic’’ transport.

Ballistic transport is implemented here only in
the case of one-dimensional quantum confinement,
when a description in terms of two dimensional
subbands is used. Indeed, we have shown that such
assumption involves a negligible error also in de-
vices with channel length down to 25 nm [5].

Let us consider Fig. 1, representing a subband
profile for electrons along the channel. Carriers are
injected into the channel from a reservoir (source)
and contribute to the current only if they overcome
the barrier modulated by the gate voltage and, to a
lesser degree, by the drain voltage (DIBL).

If we neglect the interaction between electrons
and ions and among electrons, we can simply
assume that electrons with injected longitudinal
energy lower than the subband maximum are re-
flected back to their originating contact, while the
others are transmitted over the barrier and con-
tribute to the current [6,7].

Therefore, for each subband we evaluate the
subband maximum Eimax and the corresponding
longitudinal position yimax. All electrons with lon-
gitudinal energy lower than Eimax are in equili-
brium with the originating contact, while electrons
with longitudinal energy higher than Eimax con-
serve the chemical potential of the injecting reser-
voir. The occupation factor f is therefore:

f ðE;EFÞ

¼

1þ exp E%EFS

kBT

& 'h i%1

if y < yimax; E < Eimax;

1þ exp E%EFD

kBT

& 'h i%1

if y > yimax; E < Eimax;

1þ exp E%EFS

kBT

& 'h i%1

þ 1þ exp E%EFD

kBT

& 'h i%1

if E > Eimax;

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð10Þ

where EFS (EFD) is the source (drain) Fermi energy.
If we write the total energy E as E ¼ Ey þ Ez,

where the term Ey ¼ Ei þ
#h2k2y
2my

is the longitudinal

energy, and Ez ¼ #h2k2z =2mz the transverse energy,
the density of states reads:

N2DðEy ;EzÞdE ¼ 2
X

i

jWij2
ffiffiffiffiffiffiffiffiffiffiffimymz

p

h2
1ffiffiffiffiffiffiffiffiffiffi
EyEz

p dEy dEz;

ð11Þ

and the electron density is accordingly given by:

n ¼
Z Eimax%EiðyÞ

0

X

i

jWij22
ffiffiffiffiffiffiffiffiffiffiffimymz

p

h2
E%1

2
y dEy

$
Z 1

0

E%1
2

z f ðE;EFÞdEz: ð12Þ

The electron current is evaluated assuming that
there is no tunnel current through the barrier so
that only the electrons with longitudinal energy
higher than Eimax can contribute.

Jn ¼
Z 1

0

dEz

Z 1

Eimax%EiðyÞ

X

i

2

ffiffiffiffiffiffiffiffiffiffiffimymz
p

h2
1ffiffiffiffiffiffiffiffiffiffi
EyEz

p

ffiffiffiffiffiffiffiffi
2Ey

my

s

$ 1

1þ exp
EyþEz%EFS

kBT

& '

2

4

% 1

1þ exp
EyþEz%EFD

kBT

& '

3

5dEy : ð13Þ

Similar considerations apply to holes.
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i-th subband

Fig. 1. Energy profile along the channel for a nanoscale FET.
Only electrons with energy higher than the barrier peak con-
tribute to the current.
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3. Numerical aspects

The flow diagram of the algorithm implemented
is shown in Fig. 2. The program, using an initial
guess for the potential, starts with a semiclassical
solution of the Poisson equation. The equation is

discretized with the box-integration method and
solved with the Newton–Raphson algorithm.
Dirichlet boundary conditions are enforced on each
metal gate and homogeneous Neumann conditions
on the rest of the domain boundary. The solution
obtained is used as an initial guess for the quantum
calculation, where the nested Poisson/Schr€oodinger
equation must be solved.

In order not to degrade convergence speed of
the algorithm when also the Schr€oodinger equation
has to be solved, we have implemented a simplified
version of the predictor-corrector scheme pro-
posed in Ref. [8]. In this way, instead of solving
both equations at each Newton–Raphson step, we
evaluate eigenfunctions and eigenvalues only at
the beginning of a Newton–Raphson cycle: for a
whole cycle eigenfunctions and the difference be-
tween the eigenvalues and the energy bands in each
point of the domain are assumed to be constant.
When a Newton–Raphson cycle ends the Schr€oo-
dinger equation is solved again and a new cycle is
started. The program ends when the difference
between the two-norm of the potential at the end
of two successive Newton–Raphson cycles is lower
then a fixed tolerance [9].

In Fig. 3(left) a rectangular uniform mesh is
shown, where it is possible to notice to the sub-
domain Di;j (dashed line) associated to the generic
grid point ði; jÞ. In our code, we have divided the
properties of the structure in point characteristics
and material characteristics.

Point characteristics are, for example, the poten-
tial, the Fermi level, charge concentrations, while
material properties (e.g., energy gap, electron

Fig. 2. Flow diagram of the algorithm implemented.

Fig. 3. Di;j represents the region associated to the grid point
ði; jÞ. In the figure the case of an internal point (left) and of a
boundary point (right) are shown.
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affinity, etc.) belong to the second group. In the
figure, is also shown (solid line) the material ele-
ment connected to the generic ði; jÞ grid point.

In each subdomain, Poisson and Schr€oodinger
equations are discretized with box-integration [10].

3.1. Poisson equation

In particular, for the Poisson equation, after
integrating both membersover the domain Di;j, we
obtain:
Z Z

Di;j

r * ð!rUðx; yÞÞdxdy

¼ %
Z Z

Di;j

qðx; yÞdxdy; ð14Þ

which is discretized as

Uiþ1;j % Ui;j

hi
!i;jþ1

kj
2

$
þ !i;j

kj%1

2

%

þ Ui;jþ1 % Ui;j

kj
!i;jþ1

hi
2

$
þ !i%1;jþ1

hi%1

2

%

% Ui;j % Ui%1;j

hi%1

!i%1;jþ1

kj
2

$
þ !i%1;j

kj%1

2

%

% Ui;j % Ui;j%1

kj%1

!i;j
hi
2

$
þ !i%1;j

hi%1

2

%

¼
h
% qðpi;j % ni;j þ Nþ

Di;j % N%
Ai;jÞ

þ qfi;j

i ðhi þ hi%1Þðkj þ kj%1Þ
4

; ð15Þ

where hi ¼ xiþ1 % xi, kj ¼ yjþ1 % yj, and pedices i, j
denote the quantity in position ðxi; yjÞ.

Proper boundary conditions must be enforced
to the equation, such as Dirichlet boundary con-
ditions on each metal gate and homogeneous
Neumann conditions on the rest of the domain
boundary. In the first case, the potential U is fixed,
while in the second case, the electric field
~rrU *~nn ¼ %e is fixed.

In the simulation code, we have chosen as ref-
erence level for energies the vacuum level E0 and
hence the potential for each gate point is obtained
as:

Ui; j ¼ E0 % /n
work % En

F; ð16Þ

where En
F and /n

work represent the Fermi level and
the work function of the nth gate, respectively.

Let us consider a point ði; jÞ on the boundary
and let us make reference to the Fig. 3(right):
observe how the region Di;j is much smaller with
respect to the case of internal point (Di;j becomes a
quarter in the case of each of four vertexes grid
points). In this point, we enforce Neumann con-
dition and the discretization of the Poisson equa-
tion becomes:

e !i;jþ1

kj
2

$
þ !i;j

kj%1

2

%

þ Ui;jþ1 % Ui;j

kj
!i%1;jþ1

hi%1

2

$ %

% Ui;j % Ui%1;j

hi%1

!i%1;jþ1

kj
2

$
þ !i%1;j

kj%1

2

%

% Ui;j % Ui;j%1

kj%1

!i%1;j
hi%1

2

$ %

¼
h
% q pi;j

&
% ni;j þ Nþ

Di;j % N%
Ai;j

'

þ qfi;j

i ðhi%1Þðkj þ kj%1Þ
4

: ð17Þ

3.2. Schr€oodinger equation

The two-dimensional single-particle Schr€oodin-
ger equation for electrons, given a conduction
band profile Ecðx; yÞ, reads:

% #h2

2
r * ½m%1rWn) þ Ecðx; yÞWn ¼ EnWn; ð18Þ

where Wnðx; yÞ represents the nth eigenfunction, En

is the nth eigenenergy, m is the electron effective
mass tensor in the plane perpendicular to the
direction of propagation,

m ¼ mx 0
0 my

$ %
: ð19Þ

In our simulations, we have discarded the ex-
change-correlation term, since it provides a very
small contribution. Dirichlet boundary conditions
are enforced on the quantum simulation domain
[11].
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With the box-integration method, we obtain:

% #h2

4

Wniþ1;j %Wni;j

hi

kj
mxi;jþ1

""

þ kj%1

mxi;j

##

% #h2

4

Wni;jþ1
%Wni;j

kj

hi
myi;jþ1

""

þ hi%1

myi%1;jþ1

##

þ #h2

4

Wni;j %Wni%1;j

hi%1

kj
mxi%1;jþ1

""

þ kj%1

mxi%1;j

##

þ #h2

4

Wni;j %Wni;j%1

kj%1

hi
myi;j

""

þ hi%1

myi%1;j

%

##

þ Eci;jWni;j
ðhi þ hi%1Þðkj þ kj%1Þ

4

¼ EnWni;j
ðhi þ hi%1Þðkj þ kj%1Þ

4
: ð20Þ

3.3. Numerical routines and performance

The discretized non-linear Poisson equation is
solved with the Newton–Raphson (NR) algorithm.
The sparse system of linear algebraic equations of
each NR step is solved with the package Y12MAF
[12], which is based on Gaussian elimination.

The eigenvalue problem resulting from the dis-
cretization of the Schr€oodinger equation in one di-
mension it is solved with the routine TQLI [12],
while in two dimensions is solved with the method
proposed in Ref. [11] that allows to reduce com-
puting time without significant loss in accuracy, by
solving the problem in the momentum space. The
method can be applied to structures with inho-
mogeneous effective mass and can easily be ex-
tended to the full band structure.

The computing time on an 1800 MHz Pentium
IV CPU strongly depends on the type of simula-
tion: In the case of quantum confinement in one
direction the CPU running time for a 128 · 61 grid
is 37.14 s, while in the case of quantum confine-
ment in two directions, with a 113 · 148 point grid,
the CPU running time is about 95.44 s. These re-
sults represent the worst case, with no initial guess
of the unknown potential. Finally, in the case of
a simulation of ballistic current the running time
is strongly affected by the initial guess of the
potential and is between a few minutes and an

hour. The initial guess is also very important in
order to avoid convergence problems of the algo-
rithm.

4. Examples of simulation

In this section, two examples of simulations
computed on nanoscale devices are shown. The
first structure is a silicon–germanium high mobility
electron waveguide schematically represented in
Fig. 4. It consists of a Si0:8Ge0:2 virtual substrate,
an 11 nm strained-silicon layer in which the 1DEG
forms, a 5.7 nm undoped Si0:8Ge0:2 spacer layer, a
5.7 nm Si0:8Ge0:2 doped layer, with Nd ¼ 1018 cm%3,
a 35 nm undoped Si0:8Ge0:2 spacer and a 15 nm
undoped silicon cap layer. The second spacer is
rather thick, in order to prevent the formation of
another electron channel in the silicon cap layer.
The waveguide is 160 nm wide [1,13]. Finally, we
assume that a triple metal gate is deposited over
the structure forming a Schottky contact. For the
purpose of our simulation, the Schottky junction is
reverse-biased and assumed to be perfectly insu-
lating.

Quantum confinement of carriers in the hori-
zontal (y) direction is provided by selective etch-
ing and by the depletion region induced by
acceptor states at the exposed surfaces. This last

Fig. 4. Silicon–germanium etched electron waveguide.
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effect causes the electrical width of wire to be
significantly smaller then the etched width. Along
the growth (x) direction, as a consequence of the
band alignment between strained-silicon and sili-
con–germanium, a quantum well for electrons
forms. In particular, the strained silicon channel is
grown under a tensile strain and thus two valleys
of the conduction band, along kx, are lowered in
energy while the other four valleys are raised. This
condition is required in order to obtain a con-
finement region for electrons. In addition, only the
two lowest conduction band valleys are occupied
and the energy splitting between valleys (120 meV)
leads to strongly suppressed intervalley scattering.

The self-consistent Poisson/Schr€oodinger equa-
tion is discretized onto a non-uniform rectangular
grid of 108 · 137 points and the electron concen-
tration has been calculated by solving the
Schr€oodinger equation inside the strained silicon
channel. Quantum electron density is represented
in Fig. 5, where it is possible to observe how the
electrical waveguide width is about 95 nm, instead
of 160 nm, because of the electron depletion in-
duced by interface states at the exposed surfaces.
By tuning the voltage applied to the gate, it is
possible to vary the electron density in the channel
and hence the number of occupied states. Thus,
referring to the Landauer formula of the quantized
conductance G ¼ Nð2e2=hÞ with N equal to the
number of propagating modes, it is possible to
vary, as a function of applied voltage, the quan-

tum conductance in the channel, as shown in
Fig. 6.

The second simulation example refers to a ‘‘well
tempered’’ ballistic MOSFET with channel length
of 25 nm, proposed by Antoniadis et al. [14] and
schematically represented in the inset of Fig. 7.
The oxide thickness is 1.5 nm and the polysilicon
gate has a donor concentration of 5 · 1020 cm%3. In
order to reduce short channel effects a super-halo
doping is implanted in the channel. The analytic
doping profile can be found in Ref. [14].

Assuming fully ballistic transport in the chan-
nel, we have computed the source-to-drain current.
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Fig. 6. The voltage applied to an external gate allows us to
select the number of propagating modes in the waveguide. The
conductance is plotted as a function of the gate voltage for
several etched widths of the wire. For presentation clarity each
curve is shifted by one conductance quantum.

Fig. 7. Subband energies corresponding to a gate voltage of 1 V
and a drain voltage 0 V. The transmission coefficient through
the barrier is assumed to be unity for electrons with energy
higher than the peak of the barrier and zero for electron with
energy lower than the peak.
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The energy barrier that electrons encounter trav-
eling from the source towards the drain is repre-
sented in Fig. 7 for a gate voltage VGS ¼ 1 V and
drain-to-source voltage VDS ¼ 0 V. Only the first
five subbands are shown. Quantum tunneling has
not be considered in our model and therefore the
transmission coefficient is unity above the peak of
the barrier and zero below. Thus, only electrons

with energy higher than the peak can traverse the
channel without energy loss and contribute to the
total current.

The transfer characteristics obtained with the
MEDICI simulator and with NANOTCAD2D are
compared in Fig. 8.

The two-dimensional simulator is available,
after registration, at the URL: http://www.phan-
tomshub.com. In the directory NANOTCAD2D it
is possible to find additional examples of nano-
scale semiconductor devices, among which users
can find two different types of high mobility elec-
tron waveguides defined by selective etching on a
SiGe heterostructures, a nanoscale ballistic silicon
MOSFET and a nanoscale ballistic AlGaAs field
effect transistor (Fig. 9). The parameters of simu-
lation can be varied according to the specific user
requirements. In particular, input files can be
modified by user directly via a web interface as an
HTML form or uploaded from an external source
(Fig. 10). In the same directory it is also possible to
find a detailed tutorial regarding the input data
files structure.

Finally, the hub provides basic visualization
capabilities for 2D and 3D plots controlled via a
web interface (Fig. 11).
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Fig. 8. Transfer characteristics of the 25 nm MOSFET com-
puted with MEDICI (left, from Ref. Antoniadis) and with
NANOTCAD2D (right).

Fig. 9. Screen shot of the user page with the list of simulation examples of NANOTCAD2D.
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5. Discussion and future developments

In this paper we have presented a two dimen-
sional quantum simulator based on the solution of

the Poisson/Schr€oodinger equation with the box-
integration method. The code solves also the
continuity equation for electrons and holes in the
case of ballistic transport, where propagating

Fig. 10. The parameters of simulation can be varied in accordance with the specific user requirements via an html form.

Fig. 11. Basic visualization capabilities are available to the user via a web interface.
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states are populated according to the occupation
factor of the originating reservoir. NANOT-
CAD2D allows to simulate most common semi-
conductors, such as silicon, AlGaAs, InGaAs,
strained silicon and silicon germanium and has
been successfully used to simulate III–IV hetero-
structures, strained-silicon and silicon germanium
heterostructures, CMOS structures. In the case of
silicon–germanium based devices a dedicated
procedure allows to take into account the effects of
strain on the energy bands and on band alignment.

Next extensions of the models implemented
include full two-dimensional quantum transport
and quantum tunneling, that becomes relevant for
devices with channel length shorter than 10 nm. In
addition, we are developing a model for quasi-
ballistic transport, which accounts for the possi-
bility that a fraction of carriers undergo elastic
scattering, that would allow a more accurate sim-
ulation of nanoscale field effect transistor at room
temperature.
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