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Abstract. In this paper we present a Monte Carlo technique aimed at including the effects of decoherence in
mesoscopic electron transport in the scattering matrix of the system such technique is based on a phenomenological
microscopic model, that captures the effect of elastic interactions in terms of a random term added to the phase of
the single particle wave function. Given the random character of scattering events, each Monte Carlo run provides
a particular occurrence of the reduced single particle scattering matrix. Average transport properties are obtained
from large samples of Monte Carlo runs. We focus on the simulation of magnetoconductance in Aharonov-Bohm
rings, and relate the amplitude of the h/e oscillations to the strength of dephasing mechanisms.
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1. Introduction

Several aspects that make electron transport in meso-
scopic systems such an interesting field of research are
a consequence of the coherence of the wave function.
Indeed, well known mesoscopic device concepts are
essentially interferometric modulators based on the ex-
ploitation of coherent electron transport [1,2].

However, interaction of electrons with other particles
like phonons or, especially at very low temperatures,
other electrons [3], randomizes the phase of the single
particle wave function. Dephasing suppresses quantum
interference effects and is responsible for the transition
from a quantum coherent to a macroscopic classical
behavior.

Mesoscopic physics is located between the micro-
scopic quantum world and the semiclassical world and
is only partially affected by decoherence [4]. For these
reasons, an accurate simulation of transport in meso-
scopic devices would require to include a tunable de-
gree of dephasing, in order to address the whole range
of transport regimes, from purely coherent to totally
incoherent.

A well known method to include dephasing in a
mesoscopic device consists in adding an external volt-

age probe [5–7]. Alternatively, the effect of dephasing
can be modeled by adding an imaginary potential to
the Hamiltonian, therefore introducing a mechanism
for the absorption of the coherent part of the wave func-
tion [8–10].

From our point of view, the first method has the
limit of introducing a spatially localized “dephaser”
that completely cancels phase memory, while the pro-
cess is distributed in the device region. On the other
end, the models based on absorption do not warrant
continuity of the probability current density.

The dephasing length lφ represents the characteris-
tic length for loss of coherence in a mesoscopic de-
vice. It can be experimentally evaluated by measur-
ing the weak localization correction to the conduc-
tivity [11] in semiconductor heterostructures [12], Si
MOSFETs [13] and metal conductors [14]. Hansen
et al. [15] and Pedersen et al. [16] estimated the
phase coherence length as a function of temperature by
means of the amplitude damping of Aharonov-Bohm
(AB) oscillations and found an inverse proportional-
ity of lφ on the temperature in agreement with the
theoretical model of [17]. The AB ring is the most
convenient mesoscopic structure to investigate deco-
herence since it presents both purely interferometric
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oscillations of the magnetoconductance with period
of the magnetic flux "0 = h/e, weak localization
effects [18] and universal conductance fluctuations
[19,20].

In this paper we propose a phenomenological model
for decoherence in mesoscopic devices that treats de-
phasing as a distributed phenomenon in the device re-
gion and ensures the conservation of probability den-
sity. A Monte Carlo procedure allows to take into ac-
count the random variation of phase occurring in the
device volume due to elastic interactions. Internal pa-
rameters may be varied to adjust lφ and the level of
coherence of the transport regime.

2. Monte Carlo Model

The model is developed within the framework of the
Landauer-Büttiker theory [21] of transport in a meso-
scopic device. The conductance of a generic structure is
related to the transmission probability matrix T = tt†

by the formula G = ge2/h
∑

i,l Ti,l , where t is the
transmission matrix, g is the degeneracy factor and the
sum is over the all the elements of T , corresponding to
the l-th injected mode and the i-th transmitted mode.

The device domain is divided into a sufficient num-
ber of slices along the propagation direction (i.e. the
x-axis). The electronic wave function at the j-th slice
reads

ψ j (x, y) =
∑

n

X j,n(y)
√

|k j,n|
(
a j,neik j,nx + b j,ne−ik j,nx

)
, (1)

where X j,n(y) are the transverse eigenvectors with
eigenenergies E j,n and the longitudinal wave vectors
k j,n are related to the total energy E by the requirement
E = E j,n +h2k2

j,n/2m j . The set of coefficients a j,n and
b j,n can be obtained by imposing the continuity of the
wave function and of the current density at the interface
between the j-th and the ( j +1)-th slice. The scattering
matrix S relates the coefficients of the wavefunctions
of the j-th and ( j + 1)-th slices as follows:

(
b j

a j+1

)
= S

(
a j

b j+1

)
=

(
r t ′

t r ′

)(
a j

b j+1

)
, (2)

where the symbols t, t ′, r and r ′ indicate the transmis-
sion and reflection matrices. The composition between
two adjacent scattering matrices S1 and S2 gives a final
S = S1 ⊗ S2 with transmission and reflection matrices

given by:

r = r1 + t ′
1(1 − r2r ′

1)−1r2t1
t = t2(1 − r ′

1r2)−1t1
(3)

t ′ = t ′
1(1 − r2r ′

1)−1t ′
2

r ′ = r ′
2 + t2(1 − r ′

1r2)−1r ′
1t ′

2.

The total scattering matrix of the structure ST is given
by the composition ST = S1 ⊗ S2 · · · SN , where the
symbol ⊗ represents the composition described in
Eq. (3). The presence of a magnetic field B = Bẑ
perpendicular to the propagation plane xy, is taken into
account adopting the transverse gauge A = Bx ŷ =
A(x)ŷ for the vector potential A = ∇ × B as de-
scribed in [22]. The new Hamiltonian is written as the
sum of two terms: H (x, y) = Htrans(y) + Hlong(x),
where Htrans = [py − eA(x j )]2/2my + V (y) refers to
the transversal part of the Hamiltonian and Hlong =
p2

x/2mx to the longitudinal one. The eigenvectors are
given by the product of the eigenvectors for the two
Hamiltonians, that are plane waves for Hlong and the
vectors

Xn, j (y) = X 0
n, j (y) exp[−ieA(x j )y/h] (4)

for Htrans, where X 0
n, j (x) are the solutions in the case

B = 0. Besides, using this gauge, the eigenvalues E j,n

are unaltered by the presence of the magnetic field. We
note that the condition for the validity of the discretiza-
tion of Htrans is that the magnetic flux through a generic
slice [A(x j+1) − A(x j )]W is smaller that the quantum
flux e/h, where W is the transverse device length.

Now we introduce in our description the effects of
decoherence as a dephasing of the wave function in
Eq. (1). The coherent propagation through the j-th slice
is described by a diagonal transmission matrix with
elements eik j,m d j δmn where d j = x j+1 − x j . We modify
the transmission matrix adding to each diagonal term
a random phase φR so that the generic element of the
transmission matrix is

tmn = ei(k j,m d j +φR)δmn. (5)

φR is extracted by a random number generator and
obeys a zero average Gaussian distribution with vari-
ance σ 2

j = d j/ lφ . The larger the variance the stronger
the dephasing. The scattering matrix obtained in such
a way only represents a particular occurrence of the
reduced scattering matrix of the single particle. The



Modeling Decoherence Effects on the Transport Properties of Mesoscopic Devices 395

Figure 1. Left: the AB ring with internal radius of 200 nm, external radius of 500 nm and wire width of 300 nm. Right: the AB oscillations
with varying degree of decoherence in the case of single mode propagation. From the top to the bottom σ 2 = 5 × 10−2(lφ = 400 nm),
1 × 10−2(lφ = 2 µm), 5 × 10−3(lφ = 4 µm), 1 × 10−3(lφ = 20 µm). Each conductance value is shifted by one conductance quantum for clarity
of presentation. The Fermi energy is 10−4 eV and allows the transmission of a single mode in the branch.

average reduced scattering matrix is obtained by av-
eraging the conductance over a sufficient number of
runs, typically one hundred. In this way we take into
account the intrinsic statistical character of the dephas-
ing process. We emphasize that the usual properties of
the scattering matrix S, like unitarity

SS† = I (6)

and the Onsager-Casimir relations [23]
∑

nm

Tnm(") =
∑

nm

T ′
nm(−"), (7)

where " is an external magnetic flux, still hold.

3. Simulation Results

In this section we apply the model to the simulation
of an Aharonov-Bohm ring in the presence of deco-
herence and show exponential damping in the h/e and
h/2e oscillations.

The Aharonov-Bohm ring is characterized by pure
interference and coherent effects like universal con-
ductance fluctuations when an external gate voltage
varies the Fermi energy or by weak localization effects
in the magnetoconductance [18]. We have simulated
a symmetric AB ring structure with internal radius of
200 nm, external radius of 500 nm, and width of the
lead 300 nm. The mesh size used is 10 nm, while
the number of total modes in the simulations is 20 for
the case of single mode transmission.

The oscillation period can be equal to the quantum
flux h/e or to the submultiples h/ne when coherent
backscattering is present and the electron turns around

Figure 2. Amplitude of the harmonics of the magnetoconductance
of period h/e and h/2e with Fermi energy of 10−4 eV.

the antidot of the ring more times. An increasing degree
of decoherence suppresses the amplitude of the mag-
netoconductance as shown in Fig. 1. In this Figure it
is possible to appreciate the transition from a coherent
transport regime to a partially coherent one when the
variance σ 2 of the Gaussian distribution is increased.
Note that the magnetoconductance is almost unaltered
for large values of the decoherence length, while is
completely lost when lφ is smaller than the physical
size of the ring. This behavior is in agreement with the
general definition of decoherence length. The consid-
ered range of values of lφ , between 0.4 and 20 µm, is
consistent with experimental values [15,16].

In Fig. 2 we show how to evaluate lφ from the damp-
ing of different harmonics. We assume that the ampli-
tude An of the h/ne harmonic is decreased according
to the relation An ∝ e−nL/ lφ , where L is the circum-
ference of the ring. This behavior is confirmed by the
experimental results presented in [15]. We then focus
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our attention on the oscillations with period h/e. The
amplitude of the harmonics of magnetoconductance
show an exponential slope as a function of the variance
σ 2(lφ), as it is shown in the semilog plot of Fig. 2 for
the cases n = 1 and n = 2. The exponential behavior
is pretty clean for the h/e line.

4. Conclusion

In this paper we have described a method for model-
ing decoherence in mesoscopic transport that preserves
probability current continuity and the distributed and
statistical character of the dephasing mechanism.

The method has been applied to the simulation of
magnetoconductance of an Aharonov-Bohm ring in the
presence of a varying degree of scattering.

Support from IST NANOTCAD project (EC contract
IST-1999-10828) is gratefully acknowledged.
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