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Waveforms usable for digital clock signal have also been recently obtained
(Seabaugh et al., 1999) with very simple circuitry.

4. Discussion

The resonant tunnelling diode is an extremely interesting device from the point
of view of understanding transport in highly confined structures, and for circuit
applications. At present, research mostly focuses on transport and noise in the
presence of strong magnetic fields, and on silicon-based resonant interband

tunnelling diodes, that have the great advantage of being easily integrable with
CMOS technology.
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ABSTRACT, [ssues related to the numerical simulation of nanoelectronic devices are addressed,

with particular reference to the approach adopted in the EU funded project NANOTCAD.

Basics of numerical simulation are described, as well as the structure of the 2D and 3D co_des

Jor the simulation of semiconductor devices developed within the NANOTCAD p:i'o:/ecr.

Reference is provided to typical simulation results, to additional material and to possibility of
using the NANOTCAD codes, with sample inpwt files and complete user's manuals on the
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1. Introduction

The development of novel devices at the nanometer scale with potential for
large-scale integration and room temperature operation is a formidable task. Over
the years, many ideas have been proposed on the basis of very qualitative reasoning
or simplified physical models: typically, the demonstration of working prototypes is
achieved, while the fabrication of complex logic circuits proves to be unfeasible.
There are often fundamental problems, such as the extreme sensitivity of device
operation to the presence of defects, stray charges, and other parasitics, or the need
of prohibitively tight fabrication tolerances. In other cases the switching times are

inherently slow, or the physical effect is so weak that room temperature operation is
prevented.

Many of the difficulties and of the limits of candidate technologies for
nanoelectronics and molecular electronics could be predicted, anticipated and,
hopefully, solved if detailed modeling tools of realistic devices and structures were
available. The same modeling tools could be used to design more robust devices,

and to select molecules and device structures with potential for use in large-scale
integrated circuits.

The importance of Computer Aided Design (CAD) tools in the development of
industrial semiconductor technology is welf outlined in the 1997 edition of the SIA
National Technology Roadmap for Semiconductors — Techndlogy Needs (page 6):
“Modeling and simulation is the only tool available for engineers to design
processes, material use, transistors, and structures; there is no viable alternative. The
major challenge is getting predictive model results from atomic scale through
electrical performance; to accurately model new technologies a priori, resulting in
development cost reduction; and faster time to market.”

2. Basics of numerical device simulation

Nanoelectronic devices are typically characterized by strong charge confinement
in at least one dimension, and by an intrinsic three-dimensiona) nature. For these
reasons, a simulation tool aiming at addressing a broad range of devices must have
the capability of solving the Poisson-Schridinger equation in three dimensional
domains. An approach based on the envelope function approximation, and on
Density Functional Theory (DFT) with local density approximation has been
adopted. While the limitations of such approach are apparent (Macucci et al,, 2001),
it still provides the best trade-off between numerical complexity and accuracy, for
the vast majority of devices of interest.

Without loss of generality we shall refer to simulation of two-dimensional

semiconductor structures, as has been implemented in the NANOTCAD?ZD code
(Curatola ef al., 2003).
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The Poisson equation in two dimension reads:
V-V P) =gl n#)+ p®) - 7 @)+ N3 )] B

where ¢ is the electric potential, ¢ is the diclectric constant, » and p are the electlfon
and hole densities, respectively: in the quantum region the_y are obtau}ed by sol\_/mg
the Schrédinger equation with density functional theory, in other regions are given
by the corresponding semiclassical expressions; N, and N sare the ionized

acceptor and donor concentrations, respectively. The Schr('iqinge'r equation in two
dimensions for electrons, within the envelope function approximation, reads:

_ﬁ{_a,Liig_i}%ws:E,ys, 2)
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where W is the wavefunction, # the reduced Planck’s const_ant, Ec the confinement
potential energy (conduction band plus exchangfa—correlatlon termm), . gmy) thg
effective mass in the x () direction, and the subscript s denqted the conduction l:{an‘
minimum being considered. Indeed, for direct gap materials such as (?JaAs it tﬁs
sufficient to solve (2) only once, putting sm, =m,, =m, = 0.067m,, with m, the
electron mass at rest; for indirect gap materials such as silicon, in§tead, Equation [2]
must be solved once for each couple of minima in the conduction band, thcrefore:
s=1,2,3, and we have for s=1: m;, = m, 1y ==, for s=2:.mgy.=m;, M=M=y,
for s=3 my=my, my=mz=m, where m (m,) is silicon longitudinal (transversal)
effective mass.

Once the Schrodinger equation is solved, electron concentration is given by:

2m_kyT 2 (Ep—Er ), [3]
e et (55
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where k; is the Boltzmann constant, T the temperature, £, the Fermi energy.

Partial differential equations [1] and [2] must be discret{zed, Le., translated into
algebraic non linear equations, in order to be solved numen‘cally. First, we have to
define the simulation domain, the region in which the equation must' be solved, and
the grid, ie., a finite set of points belonging to the domau_l in which we want (1;3
compute the values of the equation unknowns. Then, equations can b;a dlscre'?zth
with the box integration technique, if we observe that both (1) and 2} are of the
form v _;7 =g . Indeed, we can define the subdomain AS; around the gene}'w p‘o:nt i
of the grid, as shown in Figure 1, and integrate both terms of the equation in the
subdomain, using Gauss-Green theorem for the lefi-hand side. We have:
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fjv-fd& = ff dl = HMS‘,- [4]
48, as, A8,

Then, by consideri 7 .
o obta)i/n ering f constant on each side of AS, and g constant in the subdomain,

S F(M,)-8l,, =4S, g, [51
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Figure 1. Subdomain AS; around the generic grid point i for box integration

.

As mentioned the procedure can be appli i i
. pplied both to the P
the Schrédinger equation. lson equation and to

3. Nanoscale device simulation in the NANOTCAD codes

3.1. 3D Poisson-Schridinger solver

In ) the codes developed within the NANOTC j
(nanotcad.let..unipi.it), a Poisson-Schrédinger solver with good scalabiﬁt? pro;re?t‘ia::
for large grids has been developed, based on a multigrid algorithm. Multigrid
mf:thod.s*, are known to solve elliptic partial differential equations discretized o: N
grid points in O(N) operations (Press et al., 1992), and offer several advantages with
respect to .the Newton-Raphson-algorithm. First, multigrid methods are known to
converge in a'number of step smaller than any other “rapid” method (like, for
example, Fourier or reduction methods (Press ef al., 1992). In addition, they i:ave
reduct_:d memory requirements: while the Newton-Raphson method r::quires the
chobra.n matrix to be stored (7N elements), in the multigrid method only arrays of
size N have to be stored. The non-linear Poisson equation can be discretized with the

box integration method on several gri i i
; grids of different size, from the fi
10°-10° points) to the coarsest (a 3x3x3 grid). ® finest (of order
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The structure of the multigrid algorithm is sketched in Fig. 2. “E” represents the
exact solution on the 3x3x3 grid, the rising line “I” represents the interpolation on
the next-finer grid, “S™ represents the “smoothing” operation, ie., a series of
relaxation steps based on the Newton-Raphson algorithms which basically reduce
the residue, the descending line “R” represents restriction on the next-coarser grid,
and “L” represents smoothing plus solution of the Schrédinger equation. Without
loss of generality, Figure 2 refers to a problem with 4 different grids, where grid 1 is
the finest and grid 4 the coarsest.

4-grid g (0] ©
ncycie=2 g y
() (= @ & ©) € @ @
@ ®HE e @ & @ @ @ i (5) &
/ i
(€] [E] [g] [E] [E] [E] (E]

E = exact soluttion on the coarsest grid
S = Smoothing
R = Restriction | \H
i = Interpolation
= Schreedinger soiutlon + Smoothiny
L ¢l ]

Semiclassical selution Quantum solution

Figure 2. Structure of the Poisson-Schrodinger solver based on the multgrid
algorithm. The case of four different grids is represented

First, the approach consists in solving the non-linear Poisson equation with a
semiclassical approximation starting from an initial solution on the coarsest grid
(3x3x3 points), where the Poisson equation is a single-variable nonlinear equation.
The method then consists of a fixed number of steps on different grids, called V-
cycles from the recursive restriction and interpolation steps. The solution on each
grid is found by adding a corrector term obtained by solving the equation on a
coarser grid to an approximate solution, obtained by means of relaxation cycles
based on the Newton-Raphson algerithm. The mathematical details of the method
can be found in (Press ef al., 1992).

The potential obtained at the end of the semiclassical cycle is used as an initial
guess of the solution of the Poisson-Schridinger equation. Then, a new number of
V-cycles and relaxation steps is set for the following part of the algorithm. Every
time the algorithm is at the top of a F-cycle (i.e., on the finest grid), the Schrodinger
equation is solved with DFT, and eigenfunctions are computed, restricted and stored
on all grids. The ¥-cycle is then performed as already described, with the only
difference that the electron density in the quantum region is computed from the
stored eigenvalues.

Among several approaches to solve the Schridinger equation (for example,
Ritchie et al, 1998, Trellakis 2000), a solver in the momentum space has been
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fieve]_oped (k-space) that will allow extension to full-band simulations. The basic
idea is to transfer the eigenvalue problem to the k space by means of Fast Fourier
Transform (FFT). The problem is then solved in the % space and the solutions are
then transferred back to the real space by the anti-transform operator. The precision
9f results and the efficiency of the routine strictly depend on the choice of the basis
in thg k space, If the elements of the wave vector basis are a good approximation of
the s!ng]e particle eigenfunctions, then a small basis is sufficient to adequately
describe the splution of the Schridinger equation, even if in the real space a larger
number of points are required to accurately reproduce the potential profile. To f?nd
the lowest eigenvalues a sub matrix has to be diagonalized corresponding to the
smal_lest wave vectors. The advantage from the point of view of memory
requirements (that scale as N°) and of computing time (that scales as N° for a
complete diagonalization, where & is the matrix order), is evident,
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Figure 3. Simulation of silicon nanocrystal memories with NANOTCAD3D: a}
simplified structure of a nanocrystal memories, in which disorder in nanocrystal size
and density has been removed; b) elementary periodic cell considered in the 3D
simulation; ¢) chemical potential of the dot as a function of the voltage applied to
the top gate for number of electrons in the dot ranging from 1 to 6; d) two-
dimensional electron density at the Si-SiO2 interface as function of the gate voltage

Jor an increasing mumber of electrons in the dot, from 0 to 5 (all figures from
lannaccone et al., 2001)

. Moreox.'er, it is mecessary to enforce Dirichlet boundary conditions on the
eigenfunctions. In order to force the eigenfunctions to zero at domain boundaries, a
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basis of only sine functions for the k space has to be used. The sine-FFT is used to
compute the eigenfunction expansion in the sine basis. By solving the sub-matrix
corresponding to smaller values of £ it is then possible to gain efficiency without
losing precision of the solutions for the lowest eigenvalues (Pala et al, 2002).

Particularly interesting results have been obtained in the simulation of quantum
dot flash memories, both in the silicon-silicon oxide and in the AlGaAs-InGaAs
material systems, of single electron transistors, of silicon-germanium quantum wires
and of ballistic field effect transistors. Figure 3 shows the typical structure of a
silicon nanocrystal flash memories considered in a simulation and the relevant
results as far as the stationary clectrical properties of the device are concerned, i.e.
chemical potentials and electron density in the channel as a function of the gate bias
and of the number of electrons stored in the dots (lannaccone ef al., 2001).

3.2. Modeling of ballistic field effect transistors

As far as the simulation of nanoscale HFETs is concerned, the approach of
considering “ballistic” electrons not just as a perturbation to a “normal”, quasi-
thermal electron distribution, but as mainstream electrons, has been adopted. As zero
order approximation, fully ballistic transport has been considered.

Simulations of ballistic MOSFETs have been first performed by Natori (Natori
1994) by means of an analitical model. Moreover, recent simulations based on
semiclassical Monte Carlo codes (Bude 2000) and on a scattering theory of
MOSFETs (Lundstrom ez al., 2000) exhibit significant differences with respect to
simulations based on drift-diffusion or energy balance models.

Nanoscale MOSFETs, in particular, exhibit a significant degree of quantum
confinement in the channel: indeed, in order to control short channel effects, gate
oxide thickness is reduced and bulk doping is increased, which in turn cause an high
electric field in the vertical direction, confining electrons at the 8i/8i0, interface. A
quantum simulation is consequently required to take into account the 2D subband
splitting and the lifting of the six-fold degencracy of silicon conduction band
minima. This is especially required to reproduce the experimental MOSFET
threshold voltage Vy, since semiclassical simulation may underestimate Vr by more
than 100 mV (Fiori et al., 2002a).

Observing that quantum confinement is strong only along the direction
perpendicular to the S/SiO; interface, the Schrédinger equation can be decoupled
into 2 1D equation in the vertical direction (x) and a 1D equation in the longitudinal
direction (y): the density of states in the y-direction is well approximated by the
semiclassical expression, since there is no in-plane confinement, while discretised
states appear in the vertical direction. Such approximation reduces has been shown
to considerably the computational complexity of the problem, while introducing
only a negligible error (Fiori ef al., 20022). In order to obtain the I-V characteristics
of the 25 nm nMOSFET, a fully ballistic model has been assumed for carrier



140 RS - NMT —3/2003. MIGAS’03

transport. In this way, current-voltage characteristics is reduced to a simple carrier
transmission problem over the channel potential, which is represented by the edge of
the subbands originated by the 1D-quantum confinement. Carriers with energy
larger 1_;han the subband maximum can be transmitted from source to drain by
thermoionic emission, while carriers with lower energy can travel along the channel
only by tunneling. Since the tunneling component is negligible even in devices with
channel length of 10 nm (Bude 2000, Pirovano ef al., 2002), initially quantum
tunneling of the channel barrier has not been considered. The transmission
coefficient has been then taken equal to unity above the maximum of the barrier and
zero below, In this way electrons with energy smaller than the subband maximum
energy are in thermat equilibrium with the closest contact (source or drain), while
electrons v.vith larger energy traverse the channel without energy loss. The electron
concentration is computed by assuming that the states with energy below the
maximum of the potential barrier have an occupation factor determined by the
source/drain Fermi energy £y and Ey, respectively), while states with higher energy

propagating from the source (drain) have the occupation factor of the originating
contact (Fiori ef al, 2002b).
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Figure 4. Results from the simulation of the 25 nm “well tempered” MOSFET: aj
doping profile of the device; b) conduction band profile and energy levels of the
two-dimensional subbands in the middle of the channel, from which the very strong
quantum confinement is apparent; ¢} comparison between the transfer
characteristics computed with the ballistic code and those obtained from simulations
with the commercial simulator Medici; d) output characteristics of the device [ali
figures from (Fiori et al., 2002b)
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Figure 4 shows results from (Fiori ef al., 2002b) obtained from the simulation of
a so-called “well tempered” MOSFET with channel length of 25 nm, used as a
benchmark structure for comparison of different simulation methods.

4, Conclusion

If nanotechnology will acquire industrial and economic relevance, it will strongly
depend for its development on reliable Computer Aided Design tools, in the same
way as Microelectronics relies upon TCAD tools. Within the EU funded
NANOTCAD project (nanotcad.iet.unipi.it), three programs have been developed
for the simulation of semiconductor nanostructures in quasi-equilibrium conditions
in one-, two-, and three-dimensional domains (NANOTCADID, NANOTCADZD,
NANOTCAD3D, respectively). All codes are based on the solution of the many-
body Schrédinger ecquation with density functional theory, local density
approximation, and allow subdivide the domain in several regions with different
types of quantum confinement, providing a reasonable level of flexibility. In
addition, NANOTCAD2D also allows to simulate ballistic FET both in the 1II-V and
in the Si-8i02 material system.

All mentioned codes are freely usable on the PHANTOMS simulation hub
(www.phantomshub.com) and can be remotely run by anyone connected to the
internet. The hub also contains complete user’s manuals and a set of sample input
files for typical devices of interest.
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ABSTRACT. In this paper we present a brigf review of properties of noise in nanoelecironic
devices, focusing on shot noise, that is particularly relevant in nanoscale devices and when
Jew electrons determine device behaviowr. We review cases In which shot noise is
significantly altered with respect to full shot noise, ie., that associated to a Poissonian
process, in order to gain insights into the details of the iransport mechanisms. We focus both
on mesoscopic (ballistic) devices at very low temperature and on more conventional
MOSFETs at the nancscale, that are entering mass production and, due to their small scale,
exhibit noise properties similar to those observed in more exotic mesoscapic devices.
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