
Università di Pisa 
     

 

 

!"#!$%&%%'(#)"#*$++$%%,+-(#)"#.$//,(#."#0-11-23'+'(#4!"#$%&'()*&+,$-.&/(.&0+*01*-20.3+0&-$*-"44%$--&0+*&+*
5&11"-&,$*'0+5"'.0%-4(#056/'%$1#7-8'-9#.(#!"(#::";;<==>?;;<=@<#ABCC=D"#
#

!"#$%&'()*&+,$-.&/(.&0+*01*-20.3
+0&-$*-"44%$--&0+*&+*5&11"-&,$*
'0+5"'.0%-#

$%&&'()#$%*+**'#
E':$3F'G-+F,#H'#*+2-2+-3'$#H-11I*+J,3G$K',+-L#M1-FF3,+'%$(#*+J,3G$F'%$(#N-1-%,G&+'%$K',+'(#

O+'8-3/'FP#H'#0'/$#
,'+&-..-#/%00%**)0-#

E':$3F'G-+F,#H'#*+2-2+-3'$#H-11I*+J,3G$K',+-L#M1-FF3,+'%$(#*+J,3G$F'%$(#N-1-%,G&+'%$K',+'(#
O+'8-3/'FP#H'#0'/$#

,')1%00'#2%&&)##
E':$3F'G-+F,#H'#*+2-2+-3'$#H-11I*+J,3G$K',+-L#M1-FF3,+'%$(#*+J,3G$F'%$(#N-1-%,G&+'%$K',+'(#

O+'8-3/'FP#H'#0'/$#

23+0)#4-55-63'0'#
E':$3F'G-+F,#H'#*+2-2+-3'$#H-11I*+J,3G$K',+-L#M1-FF3,+'%$(#*+J,3G$F'%$(#N-1-%,G&+'%$K',+'(#

O+'8-3/'FP#H'#0'/$#
 

 



Numerical investigation of shot-noise suppression in diffusive conductors
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We present a numerical study of shot noise in diffusive mesoscopic conductors, aimed at a quantitative
understanding of the conditions needed for achieving the 1/3 suppression factor predicted from random matrix
theory. We investigate both two-dimensional and three-dimensional conductors, with a hard-wall model in
which elastic scatterers are represented by randomly positioned obstacles. Finally, we discuss the effect on
noise of obstacles of finite height, comparable with the Fermi level, and comment on the possibility of similar
effects in wires obtained by means of electrostatic depletion in modulation doped semiconductor heterostruc-
tures.
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I. INTRODUCTION

In the last few years, starting with the seminal article by
Beenakker and Büttiker,1 significant attention has been de-
voted in the physics community to the issue of shot-noise
suppression in diffusive conductors, i.e., conductors in which
transport is dominated by elastic scattering with the detailed
features of the potential landscape. The condition of diffusive
transport is realized when the length of the device L is larger
than the mean-free-path l between elastic scattering events
and smaller than the mean-free-path # between inelastic
scattering events. It has been shown1 that, if the number of
propagating modes N in the conductor is such that l#L
#Nl , the current power spectral density of shot noise in a
diffusive conductor is reduced by a factor 1/3 with respect to
the ‘‘full shot’’ value 2e!I! !where e is the electron charge
and I is the average current through the device" that would be
expected on the basis of Schottky’s formula2 for Poissonian
noise. Suppression of shot noise is a consequence of corre-
lations between electrons crossing the device: while in the
case of a Poissonian process crossing events are totally un-
correlated, introduction of an ‘‘antibunching’’ effect, i.e.,
making electron injection into the device less likely if an-
other electron is occupying one of the propagating modes,
leads to a decrease in the variance of the current and there-
fore to a reduced noise power spectral density. The authors of
Ref. 1 have developed an approach based on random matrix
theory, which allows them to establish that, due to the result-
ing binomial distribution of the transmission eigenvalues, the
shot-noise suppression in a diffusive conductor is exactly
1/3. Later demonstrations have been given by Nazarov,3 Alt-
shuler, Levitov, and Yakovets,4 as well as by Blanter and
Büttiker.5 The same suppression factor has been obtained
with a fully semiclassical approach by Nagaev.6 All of these
models focus on degenerate diffusive conductors, in which
the prevalent interaction creating the correlations that lead to
noise suppression is represented by Pauli exclusion.
Other authors have focused on the investigation of shot-

noise suppression in nondegenerate diffusive conductors, in
which Pauli exclusion plays a lesser role and correlations are
substantially due to Coulomb interaction. In particular,
González et al.7 obtain a suppression factor 1/3 from a clas-

sical Monte Carlo simulation of a !3D" three-dimensional
conductor in which the electrostatic potential is computed
with a ‘‘dynamic’’ Poisson solver, i.e., with a procedure in-
volving the determination of the instantaneous electrostatic
potential due to all the electrons in the device at each time
step. Shot-noise suppression in this case is dependent on the
dimensionality d of the conductor, as confirmed also by the
analytical results by Schomerus et al.,8 and equals approxi-
mately 1/d , with variations according to the dependence of
the scattering time on energy that is assumed.
We shall however focus on the case of degenerate con-

ductors and, specifically, on the analysis of our numerical
results in relationship with the outcome of the calculations of
Refs. 1,6. In particular, the coincidence between the 1/3 sup-
pression factor from the quantum mechanical calculation of
Ref. 1 and that yielded by the semiclassical approach of Ref.
6 had initially been considered surprising and possibly due to
a numerical coincidence.9 But it is now recognized10 that this
is just the result of the action of Pauli exclusion, which is
included both in the quantum mechanical and in the semi-
classical approaches, without any significant role played on
the average quantities by coherence.
Our current model can handle up to 200 transverse modes,

as a consequence of improved numerical precision and effi-
ciency with respect to earlier numerical approaches.10 The
increased numerical efficiency allows us to overcome the
limitations mentioned by Kolek, Stadler, and Haldaś,11 in the
simulation of the fully diffusive regime. The authors of Ref.
11 present an interesting numerical analysis of shot-noise
suppression in the transition between ballistic and diffusive
transports in a disordered conductor, as well as of the noise
behavior in the weak and strong localization regimes. While
they focus on the numerical verification of several theoretical
expressions for the shot-noise suppression factor, and aver-
age over a large number of samples, we are more interested
in obtaining data that can be directly compared with experi-
ments, and therefore perform calculations for a single sample
with a realistic size.
We compute the transmission matrix, by means of an op-

timized recursive Green’s function approach, in a model con-
ductor containing a large number of randomly placed ob-
stacles. From the transmission matrix, we obtain the shot-
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noise suppression factor in a variety of conditions and for
two- and three-dimensional conductors. We extend our
analysis also to the condition of ‘‘soft scatterers,’’ i.e., ob-
stacles that are not completely opaque for the impinging
electrons, and discuss the results in relationship with the
available experimental data on shot noise for diffusive trans-
port in semiconductors.12 Although such experimental data
are not conclusive, significant deviations seem to occur from
the 1/3 suppression, which is instead confirmed almost ex-
actly in the case of measurements on metallic diffusive
conductors.13
In Sec. II we present the model of a diffusive conductor

that we have used for our simulations, the numerical proce-
dure implemented for the calculation of the transmission and
reflection matrices, and the problem size limitations. Nu-
merical results are reported in Sec. III, and discussed with
reference to the existing literature. Finally, conclusions and
perspectives for further work are presented in Sec. IV.

II. MODEL

We model the conductor as a wire defined by hard walls,
with a flat bottom and containing a number of obstacles that
are spread according to a uniform random distribution. The
technique that we apply to compute the transmission and
reflection matrices can handle a generic potential landscape,
but we have decided to focus on a hard-wall approximation,
which limits the size of the parameter space and yields re-
sults that do not exhibit significant qualitative differences
with respect to those for more elaborate potential profiles.
The obstacles, to which in the following we will refer also

as ‘‘scatterers,’’ are square !or cubic, in the 3D model" re-
gions, where the potential has a value larger than that of the
‘‘flat bottom’’ of rest of the wire. If the potential associated
with the scatterers is much larger than the Fermi energy, they
are opaque, i.e., they represent real hard obstacles for elec-
tron propagation. Otherwise, for ‘‘heights’’ of the scatterers
comparable to the Fermi energy or even smaller, they act
simply as perturbations of the potential in which the elec-
trons propagate. In any case, obstacles of any height act as
elastic scatterers, since no energy dissipation mechanism is
included. Location of the obstacles is decided generating
pairs !or triplets in the 3D case" of independent, uniformly
distributed random variables, which represent the cartesian
coordinates of their centers.
For the 2D model we choose the direction of current flow

along x, and the y axis is therefore in the transverse direction.
In this case the random variable corresponding to the x co-
ordinate is uniformly distributed between 0 and L, the length
of the wire, while the random variable for the y coordinate is
uniformly distributed between 0 and W, the wire width. In
the 3D model the direction of current propagation is again
along x, while y and z are the coordinates of the transverse
cross section. Obstacles for the 3D wire are positioned gen-
erating three random variables for the x, y, and z coordinates,
which are uniformly distributed in the intervals $0,L% ,
$0,W% , $0,H% , respectively, where H is the height of the wire
along z. Both for the 2D and the 3D cases, the possible

coordinates of the obstacle centers are restricted to a discrete
set of values, rounding the results obtained for the random
variables from a linear congruence generator. The need for
such a discretization will become apparent when we describe
the procedure for the calculation of the transmission matrix.
In Fig. 1 we show a typical obstacle distribution for a 2D
wire. For this example we have L$7.72 &m, W$5 &m and
a number M$600 of square obstacles, each of which with a
size of 25%25 nm2. The diffusive section of the wire is con-
nected to semi-infinite leads of the same width, without ob-
stacles, and in which transport is thus ballistic.
For the calculation of the transmission and reflection ma-

trices we have adopted a technique based on a development
of the recursive Green’s function formalism14 that has spe-
cific advantages, which will be discussed in the following,
for this particular problem. The wire is subdivided into a
number of transverse ‘‘slices,’’ in each of which the potential
is constant along the longitudinal direction. It is straightfor-
ward to compute the Green’s functions for propagation along
each of these sections, with the assumption of Dirichlet
boundary conditions at their ends.15 With such boundary
condition, each section is separated from the others: we need
to define a procedure to obtain, from the Green’s functions of
the isolated sections, the Green’s functions of two coupled
adjacent sections. This is achieved by considering coupling
between the two sections as a perturbation V, and computing
the perturbed Green’s functions via the Dyson equation.
Such a procedure is repeated recursively, adding one slice at
a time, until the input lead is reached. The details of the
method are described in Refs. 15,16.
At the end of the recursive procedure, we have available

the Green’s function matrix Goi between a slice in the input
lead and a slice in the output lead, as well as that Gii be-
tween a slice in the input lead and itself. From them, the
transmission t and reflection r matrices can be obtained with
the straightforward procedure of Ref. 15.
The recursive Green’s function approach is particularly

convenient for the solution of the open-boundary Schrö-

FIG. 1. Potential landscape in a diffusive conductor 7.72 &m
long, 5 &m wide, containing 600 randomly distributed square 25
%25 nm2 hard-wall scatterers. Black indicates an infinite potential
and light gray indicates zero potential.
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dinger equation in a structure such as a diffusive wire, in
which we need to consider a very large number of slices, due
to the fine scale on which the confinement potential fluctu-
ates. Requirements for numerical stability in the presence of
many evanescent modes rule out techniques such as the
transfer-matrix method. Approaches such as those based on
the recursive calculation of the scattering matrix,17 although
formally very close to our Green’s function technique, do
require some additional attention if each of the elementary
scattering matrices is computed using mode matching at the
interface between adjacent sections, in the presence of
opaque scatterers. Opaque scatterers are equivalent to hard-
wall conditions, which need to be handled with particular
care, as far as the matching conditions for the normal deriva-
tive are concerned,18 and this leads to undesired complica-
tions for a structure with a possibly rather complex geometry
at each interface.
Even with our recursive Green’s function method, the in-

vestigation of a conductor in the diffusive regime poses very
strict requirements on the numerical precision, since quite a
large number of transverse slices must be included, in order
to satisfy the condition L&l , and, at the same time, a very
large number of transverse modes must be considered for
each slice, to make sure that Nl&L , as discussed also in Ref.
11. Significant improvements were needed with respect to
the code used for the calculations of Refs. 10,16. The present
version of our code can handle structures with up to 200
transverse modes and 1600 slices.
Let us finally discuss the procedure that we follow to

compute the shot-noise suppression factor. By definition,
such a suppression factor, also referred to as ‘‘Fano factor,’’
corresponds to the ratio of the actual shot noise power spec-
tral density SI to that of full shot-noise SI

fs expected from
Schottky’s theorem,

'$
SI
SI
fs$

SI
2eI . !1"

The shot-noise power spectral density is given by the
expression19

SI$4
e2

h !eV!Tr$ t†t!I!t†t "% , !2"

which, exploiting the invariance properties of the trace of a
matrix for rotations, becomes

SI$4
e2

h !eV!(
i
Ti!1!Ti", !3"

where Ti is the ith eigenvalue of t†t . Since, from the
Landauer-Büttiker formula, the conductance is given by

G$2
e2

h (
i
Ti , !4"

the Fano factor can be computed from

'$

(
i
Ti!1!Ti"

(
i
Ti

, !5"

which can be directly implemented in the numerical calcula-
tions.

III. RESULTS

We have tested the validity of our model for a diffusive
conductor, verifying, in particular, the dependence of con-
ductance on length. To this aim, we have computed the con-
ductance for two-dimensional diffusive wires that are
3.86 &m, 7.72 &m, 15.44 &m long. For all three conductors
the width is 5 &m and the obstacles are square, with a side
of 25 nm and a density of 15.55 &m!2. Results for the con-
ductance in the three cases are reported in Fig. 2, as a func-
tion of the square root of the Fermi energy. Since we are
considering hard-wall confinement, the number of propagat-
ing modes in the wire is proportional to the square root of the
energy !the energy eigenvalues for a square well have a qua-
dratic dependence on the eigenmode order", and therefore
such a number increases linearly with the abscissa of our
plot. The conductance is roughly proportional to the number
of propagating modes, and therefore it exhibits a linear in-
crease in our plots, although its quantization has been
washed out by the diffusive behavior, which is confirmed by
the fact that, for a given value of the Fermi energy, the con-
ductance is also inversely proportional to conductor length.
From knowledge of the conductance, we can obtain an esti-
mate of the mean-free path between elastic-scattering events,
using a Drude-like model,20 according to which, for a 2D
conductor,

G$
GoN
L

)l
2 , !6"

where G0 is the conductance quantum 2e2/h . There are 91
propagating modes for the largest value of the Fermi-energy
shown in Fig. 2; substituting the values for the wire length

FIG. 2. Conductance of three diffusive 2D conductors of differ-
ent length as a function of the Fermi energy of the impinging elec-
trons. All conductors are 5 &m wide and contain a uniform distri-
bution of 25%25 nm2 hard-wall scatterers, with a density of
15.5521 &m!2.
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and the conductance into Eq. !6", we get l$0.43 &m. There-
fore, the condition L&l is certainly satisfied, as well as the
condition Nl&L , at least for the shortest wire and for the
largest values of the energy.
In Fig. 3 we report the Fano factor as a function of the

Fermi energy for three wires 5 &m wide; curves are verti-
cally shifted by 1 for clarity of presentation, and dashed lines
indicate the value 1/3. The top curve is for a wire with a
length of 7.72 &m, with 600 square 25%25 nm2 obstacles.
The middle curve is for a wire 3.86 &m long, containing 600
square 25%25 nm2 obstacles. Finally, the bottom curve is for
a wire 7.72 &m long, with 600 square 12.5%12.5 nm2 ob-
stacles. We notice that for a large enough Fermi energy all
three curves converge to the expected value 1/3. Actually,
the value 1/3 is reached as soon as the number of propagat-
ing modes is about 3 times the ratio L/l . Let us provide
estimates of Nl in correspondence with the values of the
Fermi energy for which the Fano factor settles around 1/3 in
the three cases of Fig. 3. For the top curve, we notice that the
asymptotic behavior starts at about 0.6 meV, corresponding
to 52 propagating modes. Since the value of l was previously
found to be 0.43 &m, we obtain Nl$22.36 &m, corre-
sponding to 2.89 times the length L. For the middle curve,
we can assume that an asymptotic condition is achieved for a
Fermi energy of about 0.85 meV, corresponding to 62 propa-
gating modes. Since in this case the elastic mean-free path is
around 0.162 &m, we obtain Nl$ 10.04 &m, which is 2.6
times the device length. Finally, for the bottom curve, we
notice that a value of *1/3 is achieved around a Fermi en-
ergy of about 0.4 meV, corresponding to 36 propagating
modes, and therefore to Nl*20 &m, which equals the wire
length times 2.6.
As already mentioned in the previous sections, we have

extended the analysis of shot-noise suppression also to the
case of higher dimensionality, and, in particular, to the case
of a 3D conductor consisting in a wire with a square cross
section of 0.5%0.5 &m and a length of 10 &m. In Fig. 4 the
Fano factor for such a structure has been plotted for a total

number M of obstacles of 200 !upper plot" or 400 !lower
plot". Obstacles are cubic, with a side of 50 nm, and ran-
domly distributed. Based on the previously considered
Drude-like model,20 in 3D the mean-free path between elas-
tic scattering events is given by

l3D$
G
G0

3L
4N . !7"

For a Fermi energy of 2 meV, we have a conductance of 10.8
G0 for the case with 200 obstacles and of 8.4 G0 for the case
with 400 obstacles. In both cases the number of propagating
modes is 80, therefore, we obtain a mean-free path between
elastic-scattering events l3D$1.013 &m for the wire with
200 obstacles and l3D$0.788 &m for the wire with 400 ob-
stacles.
We observe that in the upper plot of Fig. 4 the Fano factor

settles around the value 1/3 for a Fermi-energy EF of
*0.6 meV, corresponding to about 19 propagating modes,
therefore, as soon as Nl3D*2L; for the lower plot this hap-
pens for EF*0.8 meV, corresponding to about 26 propagat-
ing modes, and thus again to the condition Nl3D*2L .
Hence, the conditions for reaching the asymptotic behavior
in a 3D sample are very similar to those previously discussed
for the 2D case.
The results shown so far have been obtained assuming

hard-wall obstacles as scatterers: this assumption, however,
does not faithfully reproduce, for example, the scattering ac-
tion due to ionized donors in a conductor defined by selec-
tively depleting a two-dimensional electron gas !2DEG" cre-
ated by modulation doping. In such a case, the donors are
located in the donor layer, which is physically separate from
the 2DEG and give rise to ‘‘bumps’’ in the potential seen by
the 2DEG electrons, rather than to hard obstacles. It is, there-
fore, interesting to see what happens to the Fano factor for
our model in the presence of scatterers of finite height. We
have considered 3 values for the obstacle height h: 1, 5, and
25 meV, for a conductor 5 &m wide, 7.72 &m long and
containing 600 square 25%25 nm2 obstacles. Results are re-
ported in Fig. 5: for the lowest obstacle height, which is less
than the largest values of the Fermi-energy considered, the

FIG. 3. Fano factor as a function of the Fermi energy of the
impinging electrons for three different samples. The top curve refers
to a wire with a length of 7.72 &m, with 25%25 nm2 scatterers, the
middle curve is for a wire 3.86 &m long, with 25%25 nm2 scatter-
ers, and the bottom curve is for a 7.72 &m wire with 12.5
%12.5 nm2 scatterers. For all three cases the number of scatterers is
600. The different curves are vertically shifted by 1 for the sake of
presentation clarity. We have added also dashed lines in correspon-
dence with the value 1/3.

FIG. 4. Fano factor as a function of the Fermi energy for three-
dimensional wires with a 0.5%0.5 &m square cross section and a
length of 10 &m. The wires contain 200 !upper plot" or 400 !lower
plot" randomly placed cubic hard-wall obstacles with a side of 50
nm. A vertical shift of 1 unit has been added to the upper plot to
improve readability. The dashed lines correspond to the expected
asymptotic value of 1/3.
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Fano factor drops significantly below the value 1/3. This is
expected, if we consider that, as the energy increases over
the height of the obstacles, their scattering action is signifi-
cantly reduced, the transmission coefficients increase, and
we move toward the purely ballistic regime with unitary
transmission, in which shot noise vanishes. For the obstacles
that are 5 meV high, we observe a trend toward a drop only
for the largest values of the Fermi energy, while for the 25-
meV obstacles no relevant difference is visible with respect
to the hard-wall case.
Estimation of shot-noise suppression with a realistic, self-

consistent model of a quantum wire defined in a semicon-
ductor heterostructure is beyond the scope of the present pa-
per, but the result for soft-wall obstacles provides a hint of
why experimental verification of shot-noise suppression to
the 1/3 diffusive limit has been elusive so far. The only ex-
isting noise measurement on a potentially diffusive quantum
wire12 has yielded results that are not conclusive, with a
Fano factor that has a significant dependence on the gate
bias. Since variations of the bias applied to the gates defining
the quantum wire lead to a change in the relative position of
the Fermi level and of the potential fluctuations due to the
ionized donors. A dependence of shot-noise suppression on
gate bias is to be expected, based on our results, although a
quantitative prediction requires a detailed model of the wire,
which is currently under development.
Finally, we have studied the effect that the lateral dimen-

sion of the obstacles has on shot-noise suppression. The ex-
tension of the obstacles plays a role similar to their height. If
the obstacles are too small, their scattering cross section is
not sufficient to guarantee a mean-free path much smaller
than the device length, and therefore shot noise tends to de-
crease below the 1/3 limit. In Fig. 6, we present the Fano
factor computed for three wires 5 &m wide, 7.72 &m long
and containing 300 square randomly placed obstacles with a
side d of 25, 50, 100 nm. It is apparent that for d$100 nm
the diffusive limit is achieved and maintained in the whole
range of energies considered, while for d$50 nm there is a
very slight trend toward a decrease below 1/3, and for d
$25 nm we have a clear drop of the Fano factor as soon as
the energy is larger than about 0.5 meV. If we evaluate the
mean-free path by means of Eq. !6", using the conductance

values obtained from our simulation, we obtain l
$0.34 &m for d$100 nm, l$0.72 &m for d$50 nm, and
l$0.87 &m for d$25 nm. From these results we get an
indication that, in order to reach the 1/3 limit, the conductor
length L must be at least 10 times the mean-free-path l.

IV. CONCLUSION

We have presented a numerical investigation of shot-noise
suppression in conductors containing randomly located elas-
tic scatterers, focusing on the conditions for the achievement
of the diffusive limit for which random matrix theory pre-
dicts a Fano factor of 1/3. By means of a numerical model
capable of treating up to 200 propagating transverse modes
and based on the recursive Green’s function formalism, we
have investigated both 2D and 3D structures, obtaining, re-
gardless of dimensionality, a suppression factor fluctuating,
due to interference effects, around 1/3 as soon as the mean-
free-path l between elastic scattering events is less than about
a tenth of the conductor length L, and, at the same time, the
product Nl of the number of propagating modes times l is
larger than 2–3 times the conductor length.
With our model, we observe the transition from a complex

noise behavior with few propagating modes to the 1/3 shot-
noise suppression of the diffusive regime with tens of propa-
gating modes. Our results provide further support to the
argument10 that the identity between the shot-noise suppres-
sion factor values found with a fully quantum mechanical
model based on random matrix theory and with a semiclas-
sical approach including Pauli exclusion is not a numerical
coincidence, but a direct consequence of the convergence of
quantum mechanical results to those of classical mechanics
for conductors in which a large number of transverse modes
can propagate. Such a convergence implies that phase coher-
ence has no effect on noise properties in a situation with
many propagating modes. It has recently been shown,21 in
the case of chaotic cavities, that the quantum-mechanical and
the semiclassical results coincide even for higher-order cu-
mulants of current fluctuations.
We have investigated shot-noise suppression also in the

case of soft-wall scatterers, and concluded that, as soon as

FIG. 5. Fano factor as a function of the Fermi energy of the
impinging electrons for a wire 5 &m wide, 7.72 &m long, contain-
ing 600 square 25%25 nm2 obstacles with a height of 1, 5, or 25
meV. The dashed lines indicate the diffusive limit of 1/3.

FIG. 6. Fano factor as a function of the Fermi energy of the
impinging electrons for a wire 5 &m wide, 7.72 &m long, contain-
ing 300 hard-wall square obstacles with a side d of 25, 50, and 100
nm. The dashed lines indicate the diffusive limit of 1/3.
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the obstacle height becomes of the order of the Fermi energy,
the Fano factor starts decreasing below the 1/3 diffusive
limit, as could be expected, since we move from the diffusive
regime toward the ballistic regime. In particular, this sug-
gests that in a quantum wire defined by means of electro-
static depletion in a modulation doping heterostructure, it
may be difficult to achieve the diffusive regime, due to the
limited height of the potential perturbations, mainly caused
by the donor ions, with respect to the Fermi level. A detailed

investigation of this issue requires a rather large computa-
tional model and is currently ongoing.
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