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Abstract

In this paper, we present the main issues and the modelling approaches for the simulation of nanoscale MOSFETs in
which transport is dominated by ballistic electrons. We show that is indeed possible to compute in an accurate way the
density of states in the channel in the case of quantum confinement without solving the complete two-dimensional
Schr€odinger equation. We are developing modelling tools that can be applied to several types of MOSFET structures:
bulk, strained-Si and ultra-thin SOI MOSFETs, FINFETs, double gate MOSFETs and Schottky barrier MOSFETs.
Here, results for silicon germanium and bulk silicon devices with channel length of 25 nm are presented. In the present
form, tools are limited to the case of fully ballistic transport, which might be reached by the extremely scaled MOSFETs
at end of the Roadmap.
! 2003 Elsevier Ltd. All rights reserved.

1. Introduction

According to the 2002 update of ITRS [1,2], MOS-
FETs with effective channel length of 25 nm will enter
large scale production in 2007, and MOSFETs with
effective channel length of 9 nm in 2016, at the end of the
Roadmap. Such devices are characterized by several
aspects typical of the nanometer scale: short channel
effects, quantum confinement in the channel, tunnel
current through the gate dielectric, source-to-drain
tunnel current, and far-from-equilibrium transport.

Already in present devices, a relevant fraction of
electrons contributing to the drain current (in an n-
MOSFET) traverse the channel without undergoing
inelastic scattering. Such ‘‘ballistic’’ fraction will in-
crease with scaling down, and it is predicted by some
authors to be predominant over the fraction of electrons

undergoing inelastic scattering in devices with channel
length shorter than 30 nm [3].

Proper TCAD (Technology Computer Aided Design)
tools for nanoMOSFETs should therefore consider
‘‘ballistic’’ electrons not as a perturbation of a quasi-
equilibrium distribution, but, on the contrary, as main-
stream electrons, and consider thermalized electron with
a perturbative approach.

First analytical models of ballistic MOSFETs have
been developed by Natori [4]. In addition, recent simu-
lations performed with Monte Carlo semiclassical tools
[5] or derived from a scattering theory of MOSFETs [6]
exhibit significant differences with respect to simulations
based on drift-diffusion or energy balance models.

Nanoscale MOSFETs also present a significant de-
gree of quantum confinement in the channel, due to
the high electric field in the vertical direction (perpen-
dicular to the silicon–oxide interface) and to the very
device structure (in the case of ultra-thin SOI or strained
silicon).

A quantum simulation is therefore necessary, to take
into account the separation of the density of states in
well defined two-dimensional subbands, and degeneracy
lift of silicon conduction band.
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In recent years, MOSFETs realized with strained
silicon channels on relaxed SiGe substrates have been
proposed for improving high frequency and low power
characteristics. Also in this case, the strained silicon
layer has a thickness of the order of a few nanometers,
and therefore causes significant quantum confinement of
electrons in the channel. In addition, it is well known
that electron mobility in strained silicon is significantly
larger than in bulk silicon: it is therefore important to
understand whether strained silicon provides compara-
ble advantages also in the ballistic regime, where
mobility has no physical meaning.

Other devices have been recently proposed as candi-
date structures for the 45 nm technology node and be-
yond, such as SOI devices, Schottky Barrier MOSFET,
Double GateMOSFETs, etc., which exhibit features that
can only be addressed with a simulator capable of taking
into account, in addition to ballistic transport, quantum
confinement in the channel and multi-dimensional tun-
neling. From this point of view commercial TCAD
programs are not adequate, neither concerning far from
equilibrium transport, nor concerning quantum effects.
On the other hand, in the scientific literature, several
papers appeared that address in a different way parts of
the problem:

! Through the introduction of a simple correction term
(the ‘‘density gradient’’ approach) that takes into ac-
count quantum effects in an otherwise semiclassical
drift-diffusion model [7–9].

! Through the solution of the 2D, or quasi-2D,
Schr€odinger equation in the channel, considering that
transport in the channel can be described with a drift-
diffusion model [10–12].

! Through the solution of 2D, or quasi-2D, of
Schr€odinger equation, with a fully ballistic transport
model [13–17].

! Through the solution of a quasi-2D Schr€odinger
equation and of the quantum Liouville equation in
each subband [18,19].

The method and the associated implementation
presented in Refs. [18,19], are very promising, and
apparently include all the relevant physics, except in-
tersubband scattering. However, no data are presented
as far as the computational efficiency is concerned.
Other examples listed above are either poorly efficient
from the computational point of view and mainly ori-
ented at model validation, or address only devices with
idealized (and simplified) structures or transport mech-
anism. However, the computational resources available
on a low-end workstation would allow to implement
a transport model capable to satisfy all modeling
requirements indicated above, and to consider in a de-
tailed way device architectures required to achieve the
scaling objectives indicated in the Roadmap.

2. Model

In this paper we present an efficient code for the
quantum simulation of ballistic MOSFETs. The code is
based on the self-consistent solution in two dimensions
of the Poisson equation, of the Schr€odinger equation,
and of the continuity equation for ballistic electrons. In
addition, it takes properly into account the effect of
strain on the band structure of silicon and on ballistic
transport in the channel. The code is a remarkable re-
sult, since it demonstrates that quantum simulation of
nanoMOSFETs, with realistic structure and doping
profile, can be performed with a simple high-end PC,
and does not require a huge processor cluster, as it has
sometimes been proposed. The details of the model have
already been described in Refs. [13,20] and will be only
mentioned here.

Here, we want to discuss in some detail the choice of
the occupation factor of electron states traveling from
the source to the drain and viceversa, since a proper
choice of such occupation factor, by itself, guarantees
that the continuity equation for the ballistic current be
obeyed (this is a great advantage, since there is no
additional equation to be solved except Poisson–
Schr€odinger).

Let us consider the situation sketched in Fig. 1: the
first subband profile in the longitudinal direction (from
source to drain) has a peak close to the middle of the
channel. This peak represents the energy of the barrier
controlling the drain current: the maximum value of the
subband (let us call it Esbmax) is modulated via the gate
voltage. If we assume that electrons do not lose energy,
then we can assign to each electron state the occupation
factor corresponding to the originating contact. Let us
call f ðy;EÞ the occupation factor at coordinate y (in the
longitudinal direction) and for energy E. If E < Esbmax

then f ðy;EÞ ¼ fFDðEFS;EÞ if y is on the left of the peak,

Fig. 1. Sketch of the subband profile along the channel, and of
the occupation factor assigned to electron states as a function of
energy and position.
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f ðy;EÞ ¼ fFDðEFD;EÞ if y is on the right of the peak,
where fFD is the Fermi–Dirac occupation factor, EFS and
EFD the Fermi energy of the source and drain reservoirs,
respectively. Instead, if E > Esbmax then for each y and E
there is a state traveling towards right (originating from
the source) and a state traveling towards left (originating
from the drain), therefore, the occupation factor is
f ðy;EÞ ¼ ½fFDðEFS;EÞ þ fFDðEFD;EÞ'=2.

Since confinement is particularly strong in the verti-
cal direction, we can decouple the two-dimensional
Schr€odinger equation in two one-dimensional equations
in the vertical (x) and longitudinal (y) directions. In
particular, the Schr€odinger equation reads:
!
( #h2

2mx

o2

ox2
( #h2

2my

o2

oy2

"
Wðx; yÞ þ ECðx; yÞWðx; yÞ

¼ EWðx; yÞ; ð1Þ

where mx and my are the effective masses along the x and
y directions, respectively, EC is the conduction band, E
and W are the energy and the wave function, respec-
tively. In general, we can write Wðx; yÞ ¼ wðx; yÞvðyÞ,
where w is the solution of the one-dimensional Schr€o-
dinger equation in the vertical direction in position y:

( #h2

2mx

o2

ox2
wðx; yÞ þ ECðx; yÞwðx; yÞ ¼ eEðyÞwðx; yÞ; ð2Þ

where eEðyÞ is the energy eigenvalue. Since confinement
is weak in the longitudinal direction, we approximate v
with a plane wave

v ¼ exp

!
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#h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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In order to evaluate the error introduced by our
approximations, we can substitute w and v obtained
from (2) and (3) in (1) and compute the parameter d
defined as

d ¼ max
y

( #h2

2mx
ðwvÞ þ w

#h2

2mx
v

½E ( eE1ðyÞ'wv

$$$$$$$$

$$$$$$$$
ð4Þ

d represents the ratio of the residue of the Schr€odinger
equation to the difference between the total energy and
the difference between the total energy and the first en-
ergy eigenvalue in the vertical direction, i.e., is a measure
of the relative error introduced by our approximation.
As can be seen in Fig. 2, for the so-called well tempered
MOSFET with channel length 25 nm [21], d is always
below 10(4 in the case of continuous doping profile, and
10(3 in the case of discrete distribution of impurities,
where band profiles are very rough.

If we consider only the first subband EsbðyÞ, i.e. the
lowest eigenvalues associated to the eigenstates Wlðx; yÞ
obtained by solving the Schr€odinger equation in the

vertical direction with the longitudinal effective mass,
the electron density n reads:

nðx;yÞ

¼ jWlðx;yÞj2
Z Esbmax(EsbðyÞ

0

DlðEyÞfFDðEFS=D;EyþEsbðyÞÞdEy

þ jWlðx;yÞj2
Z 1

Esbmax(EsbðyÞ
DlðEyÞ

* f ðEFS;EyþEsbðyÞÞþf ðEFD;EyþEsbðyÞÞ
2

% &
dEy

ð5Þ

where DlðEyÞ is the longitudinal density of states and
EFS=D ¼ EFS (EFD) if y is on the left (right) of the peak.

The ballistic current density in a subband, per unit
width, is given by the formula

Jl ¼ qCð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mtkT

p

h2

*
Z 1

Esbmax(Esb

F(1=2

!%
( Esb þ Ey ( EFS

kT

"

( F(1=2

!
( Esb þ Ey ( EFD

kT

"&
dEy ð6Þ

where mt is the transversal mass, C is the Gamma
function and F(1=2 is the Fermi integral of order )1/2.
The total current is obtained by summing up the above
expression over all subbands.

In addition, our code takes properly into account the
effect of strain on the band structure of silicon and on
ballistic transport in the channel, using a model de-
scribed in Ref. [22].

Here, we show how the code can be applied to the
simulation of three different types of devices:

Fig. 2. Plot of the parameter d defined in Eq. (4) as a function
of the gate voltage for the 25 nm well tempered MOSFET de-
fined in Ref. [21], in the case of continuous doping profile (solid
line) or ‘‘atomistic’’ doping profile.
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! A bulk-Si MOSFET with channel length of 25 nm
and super-halo p-doping, proposed by Antoniadis
as a benchmark device [21].

! A strained-Si MOSFET with the same doping profile
proposed in [21], fabricated on the SiGe heterostruc-
ture shown in Fig. 3 (on the left). The strained silicon
layer is 10 nm.

! A strained-Si MOSFET with an epitaxial SiGe
p-doped layer instead of the implanted p-doping on
the layer structure shown in Fig. 3 (right). The
strained silicon layer is 10 nm, the p-doped epitaxial
SiGe layer is 40 nm, with NA ¼ 1:7* 1019 cm(3, cor-
responding to the same impurity dose as the above
mentioned devices.

3. Results and discussion

The transfer characteristics of the bulk-Si 25 nm
MOSFET computed with the ballistic model are plotted
in Fig. 4, and are compared with results obtained from
the commercial simulator MEDICI, in which quantum
corrections are included (data from Ref. [21]). Complete
solution of the Schr€odinger equation, as can be seen,
leads to a significant increase of the threshold voltage,
while ballistic transport implies a significantly larger
current in the on state, as well as larger threshold voltage
since quantum confinement is fully taken into account.
The subthreshold voltage swing appears to be larger in
the case of ballistic transport. In Fig. 5, we show the
computed electron density in the same device in satu-
ration. Electrons in the channel are mostly in the first
subband, which contributes to more than 95% of the
total current in a broad range of operating voltages.

In strained-Si channels subband selection is even
stronger: in Fig. 6 we compare the conduction band
profile at inversion of the bulk Si and the epilayer-doped
strained-Si MOSFET for VGS ¼ 1 V. The subbands
corresponding to the minima along the y, z directions

Fig. 3. SiGe MOSFETs considered (not in scale): Strained-Si MOSFET (a) with super-halo p-doping (c); Strained-Si MOSFET (b)
with epitaxial SiGe p-doped layer (d).
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Fig. 4. Transfer characteristics of the bulk-Si 25 nm MOSFET
computed with the quantum ballistic code (black symbols) and
with Medici (white symbols, from Ref. [21]).

Fig. 5. Theoretical electron density in the bulk-Si 25 nm
MOSFET for VDS ¼ 0:35 V, VGS ¼ 1:2 V.
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are significantly shifted towards higher energies and
therefore are hardly populated in normal operating
conditions.

The transfer characteristics and the transconductance
of the bulk silicon MOSFETs, of the SiGe MOSFET
with super-halo doping, and of the SiGe MOSFET with
a doped epitaxial SiGe layer are compared in Fig. 7. The
presence of the silicon–germanium heterostructure sig-
nificantly affects the threshold voltage, which must be
adjusted by properly tuning the doping profile and dose,
but the current drive capability of the device seems not
to be affected by the fact that the channel forms in
strained silicon (curves in Fig. 7 seem only to be laterally
shifted). This aspect needs to be investigated in deeper
detail, since seems to suggest that the known mobility
increase in strained silicon channels does not provide
significant advantage in the ballistic regime. Actually
subband selection, which is mainly responsible for the
increased current drive on strained silicon, seems to be
obtained also in conventional silicon channels in
aggressively scaled down devices, when confinement due
to the electric field is sufficiently strong. Complete out-

put characteristics of the strained-Si MOSFETs are
shown in Fig. 8, while results for the bulk silicon
MOSFET can be found in Ref. [13].

The simulations shown suggest that the code is a
versatile tool for addressing several different types of
devices and materials. It allows us to analyze device
performance in a transport regime in which the con-
cept of mobility is not meaningful. It also allows to tune
the threshold voltage and the transconductance by
carefully adjusting the layer structure and the doping
profiles. Further, extensive simulations and compari-
son with experimental results are needed to fully validate
the code.

In order to address the needs of future technology
nodes, the model has to be further improved. In par-
ticular, we are including the following features:

! Efficient multidimensional tunneling.
! Inelastic carrier scattering in the channel.
! Time dependent simulations for extracting the

parameters important for compact model for RF
design.

Fig. 7. Drain current and transconductance as a function of the gate voltage for VDS ¼ 0:5 V for the bulk-Si MOSFET (circles), the
strained Si epilayer MOSFET (triangles) and the strained Si super-halo MOSFET (squares).

Fig. 6. Conduction band profile and subband energies the middle of the channel for the bulk-Si MOSFET (left) and for the strained-Si
MOSFET with epi doping (right).
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A version of the code extended to include tunnelling
in each subband is already publicly available, and usable
via a web interface [23]. For very short (<10 nm) channel
lengths, instead, the computation of the two-dimensional
transmission matrix is required. This feature can be
straightforwardly included in the code, without requiring
much larger computational resources.

The inclusion of a model for inelastic scattering in the
channel, that keeps the simulation time under control is
the real challenge of the project, and is still an open
problem. The model presented in Refs. [18,19] is very
interesting, but no information is available on the sim-
ulation time. One viable approach, according to us, is to
treat inelastic scattering as a first-order perturbation to
ballistic transport, completely reversing the traditional
approach of models derived from drift-diffusion. This
approach would also have the additional advantage of
becoming more and more accurate, as device size is
scaled down.

Acknowledgements

Support from the NANOTCAD project (EU Con-
tract IST-1999-10828) and from the Fondazione Cassa
di Risparmio di Pisa is gratefully acknowledged.

References

[1] International Technology Roadmap for Semiconductors
2001, Semiconductor Industry Association, San Jos$e, USA,
Available from <http://public.itrs.net>.

[2] 2002 Update of the International Technology Roadmap
for Semiconductors, Semiconductor Industry Association,
San Jos$e, USA, Available from <http://public.itrs.net>.

[3] Frank DJ, Laux SE, Fischetti MV. Monte Carlo simula-
tion of a 30 nm dual-gate MOSFET: How short can Si go?
IEDM Tech Dig 1992:553–6.

[4] Natori K. Ballistic metal–oxide–semiconductor field-
effect-transistor. J Appl Phys 1994;72:4879–90.

[5] Bude JD. MOSFET modeling into the ballistic regime,
Proceedings of the International Conference on the Sim-
ulation of Semiconductor Processes and Devices (SISPAD)
2000. p. 23–6.

[6] Lundstrom M, Ren Z, Datta S. Proceedings of the
International Conference of the Simulation of Semi-
conductor Processes and Devices (SISPAD) 2000.
p. 1–5.

[7] Ancona MG et al. Density-gradient analysis of MOS
tunneling. IEEE Trans Electron Dev 2000;47:2310–9.

[8] Wettstein A, Schenk A, Fichtner W. Quantum device
simulation with the density-gradient model on unstruc-
tured grids. IEEE Trans Electron Dev 2001;48:279–84.

[9] Connelly D, Yu Z, Yergeau D. Macroscopic simulation of
quantum mechanical effects in 2D MOS devices via the
density gradient method. IEEE Trans Electron Dev 2002;
49:619–26.

[10] Spinelli A, Pacelli A, Lacaita A. Self-consistent 2D model
for quantum effects in nMOS transistors. IEEE Trans
Electron Dev 1998;45:1342–9.

[11] Abramo A, Cardin A, Selmi L, Sangiorgi E. Two-dimen-
sional quantum mechanical simulation of charge distribu-
tion in silicon MOSFETs. IEEE Trans Electron Dev 2000;
47:1858–63.

[12] Pirovano A, Lacaita AL, Spinelli A. Two-dimensional
quantum effects in nanoscale MOSFETs. IEEE Trans
Electron Dev 2002;47:25–31.

[13] Fiori G, Iannaccone G. Modeling of ballistic nanoscale
metal-oxide-semiconductor field effect transistor. Appl
Phys Lett 2002;81:3672–4.

[14] Datta S. Nanoscale device modeling: The Green’s function
method. Superlattices Microstruct 2000;28:253–78.

[15] Ren Z, Venugopal R, Datta S, Lundstrom M, Jovanovic
D, Fossum J. The ballistic nanotransistor: A simulation
study. IEDM Tech Dig 2000:715–8.

[16] Ren Z, Venugopal R, Datta S, LundstromM. Examination
of design and manufacturing issues in a 10 nm double gate
MOSFET using nonequilibrium Green’s function formal-
ism. IEDM Tech Dig 2001:107–10.

[17] Svizhenko A, Anantram MP, Govindan TR, Biegel B,
Venugopal R. Two-dimensional quantum mechanical
modeling of nanotransistors. J Appl Phys 2000;91:2343–
54.

[18] Balaban SN, Pokatilov EP, Fomin VM, Gladilin VN,
Devreese JT, Magnus W, et al. Quantum transport in the
cylindrical sub-0.1 lm silicon-based MOSFET. Solid-State
Electron 2002;46:435–44.

Fig. 8. Output characteristics of the strained-Si MOSFET with
super-halo doping (above) and with doping of the epitaxial
layer (below).

586 G. Curatola et al. / Solid-State Electronics 48 (2004) 581–587

http://public.itrs.net
http://public.itrs.net


[19] Croitoru MD, Gladilin VN, Fomin VM, Devreese JT,
Magnus W, Schoenmaker W, et al. Quantum transport in a
nanosize silicon-on-insulator metal–oxide–semiconductor
field-effect transistor. J Appl Phys 2003;93:1230–40.

[20] Fiori G, Iannaccone G. The effect of quantum confinement
and discrete dopants in nanoscale 50 nm n-MOSFETs: A
three-dimensional simulation. Nanotechnology 2002;13(3):
294–8.

[21] Home page of the well tempered MOSFET at MIT:
Available from <www.ece.mit.edu/Well>.

[22] Curatola G, Iannaccone G. Quantum confinement in
silicon–germanium electron waveguides. Nanotechnology
2002;13:267–73.

[23] Iannaccone G, Curatola G. NANOTCAD2D on the
PHANTOMS nanotechnology hub: Available from
<www.phantomshub.com>.

G. Curatola et al. / Solid-State Electronics 48 (2004) 581–587 587

http://www.ece.mit.edu/Well
http://www.phantomshub.com

