
Università di Pisa 
     

 

 

!"#$%&'()*'+#!"#,'--'..)-/+#!"#$%&'()*&#)+,-'#%(,&).-#/-(012(%-*03+&)(%$*&,&1#)-45+)05'-"&3(*+#0)%&-'*#
)1#233*4/5#67894.9+#!"+#33":;<:=:;<>#?;@@AB"##
#

!"#$%&'()*&#)+,-'#%(,&).-#/-(012(%-
*03+&)(%$*&,&1#)-45+)05'-"&3(*#

$%&'()*+#,-).*+&.#
C43'&(4D/-()#54#,-E/E-/&4'#5/**F,-1)&D'G4)-/H#I*/((&)-4.'+#,-1)&D'(4.'+#J/*/.)D%-4.'G4)-4+#

K-4L/&94(M#54#649'#

$%-/(00(#1.22.33+2(#
C43'&(4D/-()#54#,-E/E-/&4'#5/**F,-1)&D'G4)-/H#I*/((&)-4.'+#,-1)&D'(4.'+#J/*/.)D%-4.'G4)-4+#

K-4L/&94(M#54#649'#
 

 



Two-dimensional modeling of etched strained-silicon quantum wires
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Pisa, Italy
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We present two-dimensional simulations of different types of strained-silicon quantum wires
obtained by selective etching on silicon germanium heterostructures. Such structures are promising
both for emerging ballistic devices in silicon compatible technology and for innovative nanoscale
field-effect transistors. Numerical modeling has been performed with a procedure designed to solve
the Poisson–Schrödinger equation for electrons and holes, that takes into account the effect of strain
on the band structure, conduction band anisotropy, and the effect of states at the exposed surfaces.
We show that the simulations provide insights into the capability to control the wire via an external
gate voltage, and into the dependence of wire properties on geometry and surface states. © 2004
American Institute of Physics. #DOI: 10.1063/1.1637141$

I. INTRODUCTION

Progress in strained-silicon !SS" technology is enabling
researchers to investigate, in silicon germanium heterostruc-
tures, mesoscopic transport phenomena typically observed in
III–V material systems. This effort is justified mainly by the
compatibility of SS with complementary metal oxide semi-
conductor !CMOS" technology, which is particularly impor-
tant if device applications of transport in strongly confined
systems are pursued.

Electron mobility up to 2830 cm!2/Vs at 300 K1 and up
to 8"105 cm!2/Vs at 15 K2 has been obtained in SS quan-
tum wells, due mainly to improvements in the growth of
defect-free, virtual silicon–germanium substrates. The mate-
rial itself is quite promising: tensile strain causes a splitting
of the sixfold degenerate conduction band !CB" into twofold
and fourfold degenerate valleys, and hence leads to a prefer-
ential occupation of CB minima and to reduced intervalley
scattering. Under such circumstances, it is therefore possible
to fabricate mesoscopic devices operating in the ballistic
transport regime. For the same reason, SS is an extremely
important material from an industrial point of view, and is
being introduced in latest CMOS technology generations to
improve high-frequency operation and reduce power
dissipation.3

Very recently, Wieser et al.4 demonstrated ballistic trans-
port at 4.2 K in a quantum point contact realized on a
modulation-doped Si/Si0.7Ge0.3 heterostructure, measuring
quantization of conductance in multiples of 4q2/h , where
the factor 4 is due to valley and spin degeneracy, q is the
elementary charge, and h is Planck’s constant.

From the point of view of basic physics, etched quantum
wires !QWs" are extremely promising for obtaining the large
subband splitting required to suppress intersubband scatter-
ing and achieve conductance quantization in very long wires,
as has been possible in the III–V material system.5–7

However, etched QWs are also very promising for appli-
cations in alternative ballistic devices,8 and as innovative
structures for metal oxide semiconductor field-effect transis-
tors !MOSFETs". As far as this last point is concerned, de-
vices consisting of several etched QWs in parallel with
double or triple gates have been recently proposed to sup-
press short-channel effects in nanoscale MOSFETs.9 In addi-
tion, the well-known fin field-effect transistors can be seen as
consisting of several wires in parallel with triple gates.10,11

In this article, we focus on the simulation of the electri-
cal properties of strongly confined SSQWs obtained by se-
lective etching on silicon germanium heterostructures con-
trolled via an external gate. We consider two main structures:
a QW with a triple metal gate, and a QW controlled by
etched side gates.

Such structures comprise a large fraction of Si and SiGe
wires considered in the literature, including both alternative
FET structures and more ‘‘exotic’’ mesoscopic devices. Let
us point out that, in addition to the structure described in Ref.
4, other etched silicon germanium QWs have been fabricated
and characterized at cryogenic temperatures,12–14 but only
the one described in Ref. 12 exhibited conductance quanti-
zation. A much broader range of experiments has been per-
formed on etched QWs in the AlGaAs/GaAs material sys-
tem, showing extremely interesting transport properties and
device applications !e.g., Ref. 8", that would be even more
promising if transferred to the CMOS-compatible Si/SiGe
material system.

From the simulation point of view, SS poses some addi-
tional problems with respect to AlGaAs–GaAs: the effect of
strain on the band structure has to be fully included, as well
as anisotropy and multiple minima in silicon CB, and strain-
induced anisotropy in silicon valence band !VB".

The paper is organized as follows: In Sec. II, we illus-
trate the model used in the simulation; in Sec. III, we de-
scribe the two etched structures considered, and in Sec. IV,
the main results obtained. The Conclusion section ends the
paper. Appendix A describes the method used to take into
account the effect of strain in silicon and silicon germanium.
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II. MODEL

Quantum confinement and charge distribution in QWs is
investigated by solving the Schrödinger–Poisson equation in
two dimensions with density functional theory. The nonlinear
Poisson equation for the electrostatic potential % is

&•!'&%"#!(!r"#!q#!n!r"$p!r"$ND
$!r"!NA

!!r"$ ,
!1"

where ' is the dielectric constant, n and p the electron and
hole concentrations, respectively, and ND

$ and NA
! the ion-

ized donor and acceptor concentrations respectively.15 Equa-
tion !1" is discretized with box integration on a nonuniform
rectangular grid. Dirichlet boundary conditions are enforced
on each metal gate and homogeneous Neumann conditions
on the rest of the domain boundary.

Electron and hole concentrations are obtained in differ-
ent ways depending on the degree of quantum confinement.
In all cases, we adopt the effective-mass approximation that
has been demonstrated to be rather accurate for the structure
dimensions and in the energy range considered in this
article.16

In regions where quantum confinement is very weak, a
semiclassical density of states !DOS", with the Fermi–Dirac
occupation factor, is used. In regions where the quantum
confinement is strong in two directions, the density of states
is computed by solving the two-dimensional !2D" Schrö-
dinger equation. Finally, in regions where quantum confine-
ment is significant only in one direction, the DOS is written
as a sum of 2D subbands that are obtained by solving the
one-dimensional !1D" Schrödinger equation in the direction
of confinement for each mesh point in the perpendicular di-
rection.

For Si1!xGex-based devices, with x%0.85, electrons oc-
cupy states around the silicon six degenerate CB minima,
two in each direction kx , ky , and kz of the wave vector
space. Each minimum of the CB is characterized by three
different effective masses in the three directions, and hence
the Schrödinger equation must be solved three times !see
Fig. 1". The case x&0.85, in which electrons in the CB oc-
cupy states close to eight equivalent minima in the )111*
direction, is not considered here.

In the following, we discuss in some detail the expres-
sions used for the carrier density as a function of the degree
of quantum confinement considered.

A. Two-dimensional quantum confinement:
One-dimensional electron or hole gas „1DEG-1DHG…

The 2D single-particle Schrödinger equation for elec-
trons, given a CB profile Ec(x ,y), reads

!
+2

2 &•#!mk,"!1&- i
k,$$Ec!x ,y "- i

k,#Ei
k,- i

k,, !2"

where +#h/2. , - i
k,(x ,y) represents the ith eigenfunction,

Ei
k, is the ith eigenenergy, mk, is the electron effective-mass
tensor in the plane perpendicular to the direction of propaga-
tion,

mk,#!mx
k, 0

0 my
k," , !3"

and k, , with ,#x , y, z, identifies the axis of the wave
vector space in which the CB minimum is placed. The coef-
ficients of the electron effective-mass tensor are shown in
Fig. 1, and the procedure for obtaining their value is de-
scribed in the Appendix. In our simulations, we have dis-
carded the exchange-correlation term, since it provides a
very small contribution. Dirichlet boundary conditions are
enforced on the quantum simulation domain, and the eigen-
value problem is solved according to a method described in
Ref. 17.

The local DOS per unit volume and energy near a CB
minimum is given by

N1D!E ,x ,y "#
!2mz

k,

.+ /
i

#- i
k,!x ,y "#2!E!Ei

k,"!1/2

"u!E!Ei
k,", !4"

where ,#x ,y ,z and u(E!Ei
k,) is the Heaviside function.

At this point, by integrating the DOS !4" multiplied by
the Fermi–Dirac occupation factor on all CB minima, the
quantum electron density can be expressed as

n#ge
!2mz

kxkBT
.+ /

i
#- i

kx#2F!1/2$ EF!Ei
kx

kBT
%

$ge
!2mz

kykBT
.+ /

i
#- i

ky#2F!1/2$ EF!Ei
ky

kBT
%

$ge
!2mz

kzkBT
.+ /

i
#- i

kz#2F!1/2$ EF!Ei
kz

kBT
% , !5"

FIG. 1. Six equivalent CB minima in the case of silicon and corresponding
parameters of the effective-mass tensor.
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where ge represents the degeneracy of each valley (ge#2, in
our case", F!1/2 is the Fermi–Dirac integral of order !1/2,
and EF is the Fermi energy.

In order to compute the hole concentration, we have to
solve the Schrödinger equation for heavy holes and for light
holes. In this case, the CB in Eq. !2" is substituted by the
inverted VB !Ev(x ,y), and the eigenvalues !Ei

hh and !Ei
lh

for heavy or light holes, respectively, are obtained.
Therefore, we have

p#gh
!2mz

lhkBT
.+ /

i
#- i

lh#2F!1/2$ Ei
lh!EF
kBT

%
$gh

!2mz
hhkBT

.+ /
i

#- i
hh#2F!1/2$ Ei

hh!EF
kBT

% , !6"

where gh is valley degeneracy (gh#1 in our case", and api-
ces lh and hh refer to light and heavy holes, respectively.

B. One-dimensional quantum confinement:
Two-dimensional electron or hole gas „2DEG-2DHG…

In the case of strong confinement in only one direction
!e.g., along the x direction", we assume that the DOS can be
decomposed in a quantum term along the confined direction
!x" and a semiclassical term in the other directions. The 1D
Schrödinger equation for electrons in the x direction for a
mesh point y can be written as

!
+2

2mx
k,

02

0x2
- i

k,$Ec!x ,y "- i
k,#Ei

k,!y "- i
k,, ,#x ,y ,z .

!7"
As a consequence, the available states for electrons are

grouped into 2D subbands, and the DOS can be expressed as
follows:

N2D!E ,x ,y "#
!my

k,mz
k,

2.+2
/
i

#- i
k,!x ,y "#2u#E!Ei

k,!y "$ .

!8"
By multiplying Eq. !8" by the Fermi–Dirac occupation factor
and summing over the six minima, we obtain the electron
density as

n#ge
kBT!my

kxmz
kx

.+2
/
i

#- i
kx#2 ln!1$exp$ EF!Ei

kx

kBT
% "

$ge
kBT!my

kymz
ky

.+2
/
i

#- i
ky#2 ln!1$exp$ EF!Ei

ky

kBT
% "

$ge
kBT!my

kzmz
kz

.+2
/
i

#- i
kz#2 ln!1$exp$ EF!Ei

kz

kBT
% " . !9"

Similar considerations apply to holes.

C. Effects of surface states

In the simulation of narrow QWs obtained with selective
etching, the effects of states at the exposed surface are very
important and must be taken into account in order to repro-

duce the experimental results with accuracy. In particular, for
very narrow wires, such states can fully deplete the channel
and completely screen the electric field imposed by external
gates.

In order to correctly model surface states, we have used
a simple model, based on two parameters, that is typically
applied to metal–semiconductor contacts15 and has been re-
cently validated for air–semiconductor interfaces.18 In par-
ticular, the two parameters are the density of interface states
per unit energy per unit area DS #eV!1 cm!2$ , and the en-
ergy difference %* between the vacuum level Eo and the
Fermi energy that ensures a neutral charge at the interface.
States with energy below Eo!%* are donors and states with
higher energy are acceptors.

Surface charge can then be expressed as

Qs#!qDS#EF!!Eo!%*"$ .

D. Algorithm

The initial guess of the potential is obtained by solving
the nonlinear Poisson equation with semiclassical approxi-
mation over the whole domain, with a Newton–Raphson
!NR" iteration scheme. Afterwards, the Poisson–Schrödinger
equation is solved with a NR algorithm that implements a
simplified version of a predictor-corrector scheme19 to accel-
erate convergence. Eigenfunctions and eigenvalues are com-
puted only at the beginning of a NR cycle: for the whole
cycle eigenfunctions and the difference between the eigen-
values and the energy bands in each point of the domain are
assumed to be constant. This approach allows us to avoid
solving the Schrödinger equation at each NR step, and is
implemented by simply substituting the term Ei* in Eqs. !5",
!6", and !9", with Ei*!q(%!%prev), where %prev is the po-
tential used for the solution of the Schrödinger equation.

When a NR cycle ends, the Schrödinger equation is
solved again and a new cycle is started. The program ends
when the two-norm of the difference between the potential at
the end of two successive NR cycles is lower then a fixed
tolerance.20

This approach allows us to solve the eigenvalue problem
only three or four times per simulation, while a single NR
cycle is typically completed in seven to eight steps.

III. CONSIDERED STRUCTURES

Simulations have been performed on two different types
of QWs obtained by selective etching on a modulation-doped
SiGe-Si heterostructure: a single QW covered by a metal
gate !Fig. 2" and a side-gated QW !Fig. 3".

The layer structure is the same for the two cases, and
consists of a Si0.8Ge0.2 virtual substrate, an 11 nm SS layer in
which the 1DEG and the 2DEG form, a 5.7 nm undoped
Si0.8Ge0.2 spacer layer, a 5.7 nm Si0.8Ge0.2 doped layer, with
Nd#1018 cm!3, a 35 nm undoped Si0.8Ge0.2 spacer and a 15
nm undoped silicon cap layer. The second spacer is rather
thick, in order to prevent the formation of another electron
channel in the silicon cap layer.

Quantum confinement of carriers in the horizontal !y"
direction is provided by selective etching and by the deple-
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tion region induced by acceptor states at the exposed sur-
faces, making the electrical width of wire significantly
smaller then the etched width. Along the growth !x" direc-
tion, as a consequence of the band alignment between SS and
silicon germanium, a quantum well for electrons forms. In
particular, the tensile strain in the silicon layer lifts the de-
generacy of CB minima, so that only the two lowest CB
valleys along kx are occupied and the energy splitting be-
tween valleys !1120 meV" is responsible for a strong sup-
pression of intervalley scattering.

In the first structure, we assume that a triple metal gate is
deposited over the structure forming a Schottky contact !Fig.
2". For the purpose of our simulation, the Schottky junction
is reverse biased and assumed to be perfectly insulating. Re-
sults on this structure represent for us the upper limit of
efficiency of the triple gate as far as electrical control of the
wire is concerned !achievable with an extremely thin dielec-
tric". We consider wires with etched width ranging from 20
to 200 nm, and assume a uniform density of interface states.

In the second structure, shown in Fig. 3, we consider a
side-gated structure. The QW has a width of 50 nm and is
controlled via two side gates, realized with the same hetero-
structure, separated on both sides by an air gap of 30 nm. In
this case, the capability to drive the electrical properties of
wire via the gate voltage is very poor. As in the previous
case, we assume a uniform DOS at the exposed surfaces of
both the wire and the side gates.

We have studied the electron density and the conduc-
tance of the two structures as a function of the gate voltage
and of DS . Quantum confinement is only assumed in the SS
regions, and is in two dimensions in the QW, and in one
dimension in the SS regions used as side gates, as shown in
Figs. 2 and 3.

IV. RESULTS AND DISCUSSION

In Fig. 4, we show the CB profile in two directions for a
wire width W#160 nm. The type of confinement is rather
different in the two directions: in the vertical direction, the
confinement is due of a very narrow triangular potential in-
duced by modulation doping and heterointerfaces; in the
horizontal direction, it is due to a very smooth quasiparabolic
potential induced by the depletion regions near the exposed
surfaces. Near the center of the wire, the horizontal potential
is almost flat, due to the screening of the 1DEG.

This is also reflected in Fig. 5, where the difference be-
tween the ith and the first eigenvalue is plotted as a function
of the waveguide width W.

As can be seen, for a width larger than 100 nm, eigen-
values are roughly equally separated, because of the quasi-

FIG. 2. Structure of the etched SSQW with triple metal gate structure con-
sidered in the simulations. Two-dimensional confinement is assumed in the
SS layer.

FIG. 3. Structure of the side-gated SSQW considered in the simulations.
Two-dimensional confinement is assumed in the SS region in the wire, and
1D confinement in the SS layers used as side gates.

FIG. 4. CB profile in a 160-nm-wide SSQW, in the vertical direction !left"
and in the horizontal direction !right".

FIG. 5. Energy separation of 1D subbands as a function of wire width. Ei
represents the ith eigenvalue energy. In waveguides wider than 100 nm, a
quasiparabolic potential provides almost equally separated eigenvalues. The
separation between adjacent modes is not uniform for narrower wires, as
confinement in the x and y directions starts to be comparable, and eigen-
function nodes add also in the growth direction.
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parabolic shape of the potential in the in-plane direction. The
color map of the eigenfunctions corresponding to the lowest
six eigenvalues for W#40, 80, and 100 nm is shown in Fig.
6. In the 100 nm case, additional nodes and maxima develop
only in the horizontal direction, where confinement is
weaker.

Separation between adjacent modes is not uniform for
narrower wires, as confinement in the x and y directions
starts to be comparable, and eigenfunction nodes add also in
the growth direction, as can be seen in Fig. 6 for W
#80 nm and i#6, and for W#40 nm and i#3 and 5.

For example, in Fig. 5, the separation between the third
and the fourth eigenvalues for W#40 nm is very small. This
is due to the fact that for W&40 nm, the third eigenfunction
has two nodes in the horizontal direction !as shown in Fig.
6", and for W#40 nm, the third eigenfunction has one node
in the horizontal direction and one node in the vertical direc-
tion.

Analogously, moving from wider to narrower wires, ev-
ery alteration to the quasi-uniform energy spacing of propa-
gating modes corresponds to a change of the configuration of
nodes in the transversal wave function.

We would like to point out that the maximum separation
between subband energies is obviously obtained for the nar-
rowest wire considered !20 nm", and is 11 meV. Such a value
is still smaller than the thermal energy at room temperature
!26 meV", and poses some doubts on the possibility to sup-
press phonon scattering between subbands, and therefore to
significantly increase electron mobility, in strongly confined
QWs.21 Indeed, it is still possible to increase the subband
spacing somewhat, by further reducing the wire width and
the SS thickness. However, it is worth noticing that the 20
nm wire is already completely depleted at equilibrium, if
reasonable assumptions are made on interface states: for nar-
rower wires, this would introduce a trade-off between de-
sired confinement and voltage to be applied to the triple gate
to populate the channel.

The electron density per unit length in the channel, for
the first structure, is shown in Fig. 7, as a function of the
external applied voltage and for several wire widths. The
interface state parameters are those typical for exposed
silicon:15 DS#2.7"1013 eV!1 cm!2 and %*#4.7 eV. As can
be seen, the capability to control the electron density in the
wire via the external gate does not depend on the wire width,
since it is due mainly to the two lateral depletion regions.
The capacitance per unit length is 0.24 fF/2m. The rather
large capacitance obtained is due mainly to the fact that the
potential profile in the horizontal direction is rather rigid;
that is, it changes very little with the applied voltage.

The number N of propagating modes !that is, of eigen-
values with energy smaller than the Fermi energy" is shown
in the same graph. Excluding thermal averaging, the conduc-
tance is G#N(4q2/h)#NGo , where the conductance quan-
tum Go in silicon is twice the universal value due to valley
degeneracy. From Fig. 7, it is also clear that the voltage
required to add a propagating mode has a slight dependence
on the wire width. Again, this is due to the fact that the
transconductance is mainly controlled by the lateral deple-
tion regions, that do not depend on the wire width.

The side-gated structure is much more sensitive to sur-
face states, Indeed, values of DS considered in the previous
case, here would completely screen the field induced by the
side gates. This is very clear once we realize that the capaci-
tive coupling between the gates and the 1D channel is much
weaker, and there are two air–semiconductor interfaces in
between.

For this reason, in the simulation of the side-gated struc-
ture we consider a value of DS two orders of magnitude
smaller. A color plot of the distribution of the density of
electrons is shown in Fig. 8 for an applied voltage of 0.5 V:
electrons accumulate at the exposed surface of the side gates,
and electron concentration in the QW is significantly smaller.

In Fig. 9, we show the electron density in the channel as
a function of the voltage VG applied to the side gates and
DS . It can be seen that in this case, for all values of DS
considered, the gate-to-channel capacitance is at least an or-
der of magnitude smaller, due to the much larger distance
between the gates and the wire.

In the same figure, the number of propagating modes,
and therefore the conductance of the wire, is also shown. It
should be noticed that, while the threshold voltage has a
significant dependence on the value of DS , the capacitance
and the voltage required to add a propagating mode depend
only smoothly on DS , meaning that the range of DS consid-
ered ensures that the external field is not screened at the
surface.

FIG. 6. Color map of the first six propagating modes in the SS waveguide
for widths W#40, 80, and 100 nm. As the waveguide width is increased,
nodes of the transversal eigenfunctions develop only in the lateral direction.

FIG. 7. Density of electrons per unit length in the channel as a function of
the gate voltage, for the QW sketched in Fig. 2, for different wire widths,
from 20 to 200 nm. Also shown is the number of propagating modes, that is,
of modes with energy smaller than the Fermi level.
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V. CONCLUSION

We have investigated quantum confinement and electri-
cal properties in strained-silicon quantum wires controlled by
external gates.

We have shown that both in a triple-gate structure and in
a side-gated structure, the capability of controlling wire con-
ductance via the gate voltage depends only weakly on the
wire width since it is due mainly to the lateral two depletion
regions. In particular, the side-gated heterostructure is much
more sensitive to the effects of interface states that can com-
pletely screen the external field induced by the side gates.

The considered structures are very promising for obtain-
ing large subband separation and hence suppression of pho-
non scattering in order to achieve low-temperature conduc-
tance quantization even in long wires. On the other hand,
large mobility enhancement at room temperature, as pre-
dicted by Sakaki, is hardly achievable in these structures,
since the typical subband separation is still smaller than ther-
mal energy.
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APPENDIX: BAND PARAMETERS IN STRAINED
SI!GE1À! ALLOYS ON SI"GE1À" SUBSTRATES

Here, we describe the procedure used for computing the
band alignment at the Si,Ge1!, /Si3Ge1!3 interface. In Fig.
10, we schematically represent a strained layer grown onto a
relaxed substrate and emphasize the strain-induced splitting
of the CB minima and VB edges. It is important to notice
that the procedure implemented is still valid even if the sub-
strate is itself strained and the lattice constant is imposed by
a third unstrained layer, but it fails if the germanium mole
fraction in the substrate or in the epitaxial layer increases
above 0.85.

The lattice constant in the substrate, as a function of
germanium concentration, can be expressed as22

ao!3"#ao!Si"$0.200326,!1!3"$#ao!Ge"!ao!Si)]32.
!A1"

The epitaxial layer lattice constant a! in the growth direction
is given by22

a!!,"#ao!,"!1!2
c12!,"

c11!,"

a &!,"!ao!,"

ao!," " , !A2"

where c11 and c12 are the elastic constants.
Starting from the difference 4Evav between the weighted

averages of VB edges at the 5, we have computed the split-
ting from the average VB edge of the three VB edges 4Ev1 ,
4Ev2 , 4Ev3 as a function of , and 3:22,23

4Evav#!0.047!0.063"!,!3", !A3"

4Ev2#
1
34o!

1
26E001 , !A4"

4Ev1#! 1
64o$

1
46E001$ 1

2#!4o"
2$4o6E001

$ 9
4!6E001"2$1/2, !A5"

FIG. 8. Color map of the electron density in the side-gated structure illus-
trated in Fig. 3. White contours represent the geometry of the QW and of the
side gates.

FIG. 9. Density of electrons per unit length in the QW illustrated in Fig. 3,
as a function of the side-gate voltage, for a DOS at the exposed surface
varying from 1"1011 to 10"1011 eV!1 cm!2. The number N represent the
number of occupied subbands as a function of the width, of the applied
voltage and of the interface DOS.

FIG. 10. Band alignment at the Si,Ge1!, /Si3Ge1!3 interface.
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4Ev3#! 1
64o$

1
46E001! 1

2#!4o"
2$4o6E001

$ 9
4!6E001"2$1/2, !A6"

where 4o is the experimental spin–orbit splitting in the un-
strained material, and 6E001 is the linear splitting of the
multiplet.23

Similarly, the splitting of the twofold and fourfold CB
minima with respect to the average CB edge can be ex-
pressed as follows:22,23
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where ' ii , with i#x , y, z, are the components of the sym-
metric strain tensor, and Eu is a deformation potential.
Hence, we can calculate the discontinuity between the VB
edges, the gap in the strained layer, and finally the disconti-
nuity between the CB minima:
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where 4Evi
sub and 4Evi represent the difference between the

maximum and the average VB edge in the substrate and in
the epitaxial layer, respectively. i#1(2) in the case of tensile
!compressive" strain. We have
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where 4Ego is the gap variation as a consequence of an
uniaxial strain in the growth direction,24 and j#2, 4 in the
case of tensile or compressive strain, respectively. Eg

relax is
the value of the energy gap known for the unstrained layer,
which we take from Ref. 24. Finally,
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The electron effective masses are calculated as a function of
, and 3,22 while we have used for holes the values known
for silicon. In particular, electron effective masses are calcu-
lated in the following way:
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where s#l , t1, t2 identifies the longitudinal and transverse
mass, and W is a 3"2 matrix.22 Hole effective masses are
computed as a function of Ge mole fraction in the strained
layer and in the virtual substrate, following Ref. 25.
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12M. Holzmann, D. Többen, G. Abstreiter, M. Wendel, H. Lorenz, and J. P.
Kotthaus, Appl. Phys. Lett. 66, 833 !1995".

13E. Giovine, A. Notargiacomo, L. Di Gaspare, E. Palange, F. Evangelisti,
R. Leoni, G. Castellano, G. Torrioli, and V. Foglietti, Nanotechnology 12,
132 !2001".

14R. A. Smith and H. Ahmed, J. Appl. Phys. 81, 2699 !1997".
15S. M. Sze !Wiley, New York, 1981".
16F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli, M. Stadele, C. G.
Strahberger, and P. Vogl, Physica B 314, 345 !2002".

17M. G. Pala and G. Iannaccone, Nanotechnology 13, 369 !2002".
18M. G. Pala, G. Iannaccone, S. Kaiser, A. Schliemann, L. Worschech, and
A. Forchel, Nanotechnology 13, 373 !2002".

19A. Trellakis and T. J. Galick, J. Appl. Phys. 81, 7880 !1997".
20A. Trellakis and U. Ravaioli, J. Appl. Phys. 86, 3911 !1999".
21H. Sakaki, Jpn. J. Appl. Phys. 19, L735 !1980".
22M. Rieger and P. Vogl, Phys. Rev. B 48, 14276 !1993".
23C. G. Van de Walle, Phys. Rev. B 34, 5621 !1986".
24R. People and J. C. Bean, Appl. Phys. Lett. 48, 538 !1986".
25S. K. Chun and K. L. Wang, IEEE Trans. Electron Devices 39, 2152

!1992".

1257J. Appl. Phys., Vol. 95, No. 3, 1 February 2004 G. Curatola and G. Iannaccone

Downloaded 13 Jun 2007 to 131.114.53.157. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


