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Three-Dimensional Simulation of Realistic
Single Electron Transistors

Gianluca Fiori, Marco G. Pala, and Giuseppe Iannaccone, Member, IEEE

Abstract—We present an approach, and its implementation in
a computer program, for the three-dimensional (3-D) simulation
of realistic single electron transistor (SET) structures, in which
subregions with different degrees of quantum confinement are
simultaneously considered. The proposed approach is based on
the self-consistent solution of the many body Schrödinger equa-
tion with density functional theory and on the computation of
the conductance of tunnel constrictions through the solution of
the 3-D Schrödinger equation with open boundary conditions.
We have developed an efficient code (ViDES) based on such
an approach. As examples of addressable SET structures, we
present the simulation of a SET, one defined by metal gates on an
AlGaAs/GaAs heterostructures, and of a SET defined by etching
and oxidation on the silicon-on-insulator material system. Since
SETs represent prototypical nanoscale devices, the code may be
a valuable tool for the investigation and optimization of a broad
range of nanoelectronic solid-state devices.

Index Terms—Poisson/Schrödinger, silicon-on-insulator (SOI)
technology, single electron transistors (SETs), split gates, three-di-
mensional (3-D) solver.

I. INTRODUCTION

THE improvement of fabrication techniques in the last
couple of decades has made possible the realization and

characterization of devices capable of exploiting the discrete-
ness of the electron charge. Single electron transistors (SETs)
represent the prototype of such types of devices, allowing to
control a current consisting of electrons traversing the device
one by one, by varying the charge on the control gate by a
fraction of an electron [1]. While SETs are extremely and
exceedingly sensible to the presence of single charged defects,
impressive reproducibility have been recently obtained through
refined fabrication techniques [2], [3].

In simulating these types of devices, it is necessary to take
into account the effects of quantum confinement, typically
three-dimensional (3-D) in the dot region, two-dimensional
(2-D) in the wire connecting the dot to reservoirs, and one-di-
mensional (1-D) in the two-dimensional electron gas (2DEG)
reservoirs. This kind of approach has been proposed by Scholze
et al. [4]: The self-consistent Poisson–Schrödinger equation
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is solved with the density-functional theory, then the device
capacitances are extracted from the dependence of the electro-
chemical potential of the dot on the gate and reservoir voltages,
and the constriction conductances are computed in an approxi-
mate way, using the 1-D transfer Hamiltonian formalism.

In this paper, we present a code (ViDES) for the self-consis-
tent solution of the many-body Schrödinger equation in a real-
istic 3-D domain based on density functional theory (DFT) with
local density approximation (LDA) [6]. The Poisson equation
is solved over the entire 3-D domain, while the solution of the
Schrödinger equation is limited to confined regions and solved
in the momentum space [7]. The numerical algorithm is based
on the Newton–Raphson (NR) method with a predictor corrector
scheme simplified with respect to that proposed in [5]. In ad-
dition, in order to compute the SET conductance within a 3-D
treatment of the transport, we have solved the 3-D Schrödinger
equation with open boundary conditions for each quantum con-
striction by means of the scattering matrix technique. For each
constriction, the domain is subdivided in slices along the
propagation direction, and the 2-D Schrödinger equation in the
transversal plane is solved for each slice. By enforcing mode
matching, we can then compute the total scattering matrix of
the constriction and, therefore, the conductance.

This paper is organized as follows. In Section II, we present
the physical model used to describe the devices and the adopted
numerical methods. In Section III, we show simulation results
for a SET defined by split gates on a AlGaAs/GaAs heterostruc-
ture, while in Section IV, we show results for a SET fabricated
with silicon-on-insulator (SOI) technology [8]. Conclusions
follow in Section V.

II. PHYSICAL MODEL AND NUMERICAL METHOD

In order to solve the many-body Schrödinger equation with
the mean field approximation in a realistic structure, we have to
solve the nonlinear Poisson equation in three dimensions, which
reads

(1)

where is the electrostatic potential, is the dielectric constant,
and are the hole and electron densities, respectively, is

the concentration of ionized donors, is the concentration of
ionized acceptors, and is the fixed charge density.

While a semiclassical approximation is assumed in the whole
domain for hole, acceptor, and donor densities, the electron den-
sity in strongly confined regions is computed by solving the
Schrödinger equation with the DFT and LDA [9]–[11]. Else-
where, also for the electron density, the semiclassical expression
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is used. The Schrödinger equation for the Kohn–Sham single
electron states reads

(2)

where is the reduced Planck’s constant, is the effective mass
tensor, and and are the eigenfunctions and eigenvalues,
respectively. The confining potential can be expressed as

, where is the conduction band edge and is
the exchange-correlation potential [6]

(3)

Here, we use the expression valid for a 3-D system, which we
have found to have an impact on the results only inside the dots.
It turns out that exchange-correlation corrections to the potential
are negligible in other regions of the analyzed structures. Even
if the region is not strictly closed, in the sense that tunneling out
has a nonzero probability, we assume null Dirichlet boundary
conditions for the eigenfunctions. As long as tunnel barriers are
opaque (tunneling probability much smaller than one) and the
boundaries of the confined region are taken in order to allow
penetration of the wave function in the barriers, such approxi-
mation has a negligible effect on the energy eigenvalues and on
the shape of the eigenfunctions.

The coupled Poisson and Schrödinger equations are solved
by means of an NR method with a predictor–corrector scheme,
which we have verified to be faster and more stable than a code
previously developed by our group, based on the multigrid al-
gorithm [16]. The Schrödinger equation is solved at the begin-
ning of each NR cycle. The eigenfunctions are then kept con-
stant until the NR cycle converges, while the eigenvalues are ad-
justed according to the mentioned predictor–corrector scheme
[5]. At the end of the NR cycle, the Schrödinger equation is
solved again and a new NR cycle is performed. The algorithm
is ended when the norm-two of the difference between the elec-
trostatic potentials obtained at the end of two successive NR cy-
cles is smaller than a given threshold. We sketched a flowchart
of the whole code in Fig. 1: an initial potential is used to
compute the local density of states by solving the Schrödinger
equation; the local density of states is then frozen and the non-
linear Poisson equation is solved with an NR algorithm in order
to obtain the potential . If is not close enough to , a
new cycle is started by again computing the local density of
states. In this case, we also verified that the residual term of the
Poisson equation was approximately one-millionth of the elec-
tronic charge.

From a numerical point-of-view, the main problem is repre-
sented by the memory and the computational resources required
for the solution of the 3-D Schrödinger equation. Our approach
allows us to keep such requirements under control by solving
the Schrödinger equation in the momentum space with a method
developed and discussed in [7]. The main advantage in solving
the Schrödinger equation in the momentum space consists of the
possibility to use a smaller number of basis elements to prop-
erly describe the solutions corresponding to the smaller ener-
gies, which correspond to occupied states. A sine fast Fourier

Fig. 1. Flowchart of the self-consistent 3-D Poisson–Schrödinger solver.

transform is used to transfer in the momentum space the phys-
ical quantities defining the problem, but not to directly solve (2).
Indeed, once the eigenvalue problem is transferred into the mo-
mentum space through the sine fast Fourier transform, we can
solve the eigenvalue problem on a reduced matrix and then an-
titransform the eigenfunctions in the real space. If confinement
is quite strong, as is often the case, we can have a substantial
reduction of the matrix size in the momentum space, typically
by a factor of two in each direction, which means a factor of
eight in the matrix size. After such a reduction, we can even use
standard full diagonalization algorithms since the time for the
solution of the eigenvalue problem becomes a small fraction of
the overall computing time, and there is a small marginal advan-
tage in making use of more sophisticated algorithms.

Concerning the 3-D quantum region, the quantum dot, the
number of electrons in the confined region is fixed to , and
the electron density can be expressed as

(4)

where is the orbital associated to the th eigenvalue, and
is the number of fully occupied single electron levels.

For a given , the electrochemical potential of the dot can
be determined in a simple way by means of the Slater formula
[12]. Indeed, the electrochemical potential , defined as the
energy necessary to add the th electron to the dot, can be ex-
pressed as

(5)

where is the total energy of the dot, while is the energy of
the half-occupied highest Kohn–Sham orbital of a system with

electrons.
Once we obtain the band and density profiles at quasi-equilib-

rium, we can compute the transport properties of the device. In
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order to compute the conductance between two generic subre-
gions (nodes) of the device, we solve the 3-D Schrödinger equa-
tion with open boundary conditions along the direction of prop-
agation.

We obtain the quantum conductance at zero temperature
using the Landauer–Büttiker formula [13], [14] that expresses

as a function of the transmission matrix

(6)

where is the electron charge and is Planck’s constant. The
numerical method is based on the computation of the scattering
matrix of the conductor. First, the domain is subdivided in sev-
eral slices along the propagation direction. For each slice , one
can easily compute the scattering matrix by solving the 2-D
Schrödinger equation with Dirichlet boundary conditions on the
transversal cross section. has the form

(7)

where and are the transmission and reflection ma-
trices, respectively, from the left- to right-hand side (right- to
left-hand side). Note also that satisfies the relation
that implies current continuity. In order to compute the total
scattering matrix , it is sufficient to compose all the ma-
trices by enforcing continuity of the wave function and of the
probability current density [15].

At low temperatures, current through the central dot—in the
limit of the linear transport regime—is allowed only when the
electrochemical potential of the dot aligns with the Fermi energy
of the two reservoirs and is characterized by a series of peaks,
whose broadening depends on the temperature. The height of
such peaks depends on the geometry of the dot and of the tun-
neling barriers and is proportional to the transmission proba-
bility of one electron through the barrier. The transmission prob-
ability is related to the tunneling rate via the generic relation

, where is the attempt frequency. We are interested
in the energy regime , where the generic
conductance formula, given in [22], holds as follows:

(8)

(9)

Here, and are the tunneling rates corresponding to the
left- and right-hand-side leads, respectively, whereas is the
number of electrons in the dot that minimizes the absolute value
of , which represents
the level that almost totally contributes to conduction, is
the electrostatic energy of the dot, and is the energy level.
Comparing the notation of [22] with ours, we note that
corresponds to for the values of for which

.
The values of and are computed using the mentioned

method for the computation of the scattering matrix of the 3-D

potential that defines the constriction. For such computation,
that voltage applied to the control gate is the value for which
the electro-chemical potential in the dot aligns with the Fermi
energy of the leads, i.e., in correspondence with each peak of
the Coulomb oscillations of the conductance as a function of
the control gate voltage.

III. SET ELECTROSTATICALLY DEFINED BY METAL GATES

ON AN AlGaAs/GaAs HETEROSTRUCTURE

Here, we consider a SET defined by split gates on an Al-
GaAs/GaAs modulation doped heterostructure. We consider
such a device as a typical testbench structure due to the pop-
ularity of structures defined by gate voltages. Further, at the
same time, it presents two kinds of different quantum con-
finement since we have 3-D confinement inside the dot and
1-D confinement along the 2-D electron gas at the interface.
Physically, such a SET is interesting since it is characterized by
a variable size of the dot depending on the number of electrons
in the central island and by shell-filling effects.

The layer structure is shown in Fig. 2(a) and consists of a
p-doped GaAs bulk layer with unintentional acceptor concen-
tration of 10 cm on which a 20-nm intrinsic AlGaAs spacer
is grown, then a 50-nm AlGaAs n-doped layer with donor con-
centration of approximately 10 cm , and a 10-nm GaAs cap
layer.

In Fig. 2(b), the gate layout considered in the simulation is
shown.

Surface states have been considered on the exposed surface
at the top of the structure. Indeed, the region in which elec-
tron transport occurs is very close to the surface so device
characteristics are strongly affected by surface properties. We
have assumed a model for surface states typically applied to
metal–semiconductor interfaces [17] and based on two param-
eters : an effective work function and a uniform density of
surface states per unit area per unit energy [18]. We assume
that all the surface states below the effective work function
behave as donors and all the states above as acceptors. Here,
we use parameters for the surface state model extracted from
measurements on similar structures [19]: eV and

cm eV . Donor concentration has been
taken as cm .

In the 2DEG, two kinds of confinement have been consid-
ered. As shown in Fig. 2(b), in the center of the 2DEG, the
3-D Schrödinger equation has been solved since quantum con-
finement is strong in all three directions while, in the rest of
the 2DEG, the Schrödinger equation has been solved only in
the vertical direction since confinement along the direction per-
pendicular to the AlGaAs/GaAs interface is predominant. Re-
garding the corrections due to exchange–correlation effects, we
have found that they are significant only in the 3-D confinement
region, whereas in the 1-D confinement region, using the ex-
pression for the exchange–correlation potential in a 2-D system
given in [20], they are smaller by more than one order of mag-
nitude and, hence, can be neglected with respect to the energy
level spacing in a 2DEG. The boundaries of the 3-D regions are
chosen in such a way that Dirichlet boundary conditions on the
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Fig. 2. (a) Layer structure and (b) gate layout of the SET defined by split gate on an AlGaAs/GaAs heterostructure. In this figure, the regions are shown in which
1-D and 3-D quantum electron density has been computed. Gates 1, 3, 4, and 6 are the external gates that define the quantum dot, while 2 and 3 are the inner gate
pair that determine the number of electrons in the dot.

Fig. 3. Electrochemical potential as a function of the inner gate voltage for a
number of electrons ranging from 1 to 4.

wave function can be imposed without introducing artifacts in
the electron density.

Fig. 3 shows the computed electrochemical potential as a
function of the inner gate pair voltage for a fixed external
gate voltage ( V). From these curves, it is possible
to extract the capacitance between the dot and inner gates
(gates 2 and 5) and the total capacitance defined as

(10)

where is the capacitance between the dot and each reservoir
and is the capacitance between the dot and the other gates
(gates 1, 3, 4, 6). Fig. 4 shows the equivalent circuit of the SET.
In particular [21], we have

(11)

where and are the distances between two curves that
differ by one electron at constant and , respectively, as
shown in Fig. 3.

Fig. 4. Equivalent circuit of the AlGaAs/GaAs SET device.

TABLE I
TOTAL DOT CAPACITANCE AND GATE–DOT CAPACITANCE DERIVED FROM

SIMULATIONS AS A FUNCTION OF THE NUMBER OF ELECTRONS IN
THE DOT FOR THE AlGaAs/GaAs SET

TABLE II
GATE VOLTAGES CORRESPONDING TO CONDUCTANCE

PEAKS OF THE AlGaAs/GaAs SET

Curves are almost linear and parallel, but are not equally
spaced. This means that while and vary as the number of
electrons in the dot increase, the ratio remains constant.
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Fig. 5. (a) Schematic view of the central region of the simulated SOI SET extracted from an SEM image in [8]. (b) Equivalent circuit for the SOI SET.

The values of the capacitance extracted from Fig. 3 are written
in Table I. is similarly obtained as

(12)

where is defined as , where
is the drain voltage required to have eV for a given

. The remaining capacitance can be obtained from (10).
are quite small for the considered structure, meaning that the

dot is weakly coupled to the reservoirs.
From Fig. 3, we can also extract the gate voltages for which

the dot electrochemical potential is equal to the Fermi level of
the reservoirs, at which conductance exhibits a peak (Table II).
In this case, an odd–even pairing is evident in the position of the
conductance peaks, and is due to the fact that each Kohn–Sham
orbital is occupied by two electrons, and the conduction band in
GaAs has a single minimum at the point.

In the case of the GaAs SET, we do not show simulation re-
sults on conductance since, for a small number of electrons in
the dot, the dot is so small and weakly coupled to the reser-
voirs that conductance is negligibly small. In reality, that would
correspond to a dot that becomes practically insulated from the
reservoirs even when it still contains several electrons.

IV. SOI SET

We now focus on the SOI SET fabricated and characterized
at the University of Tübingen, Tübingen, Germany, by Augke et
al. [8]. The structure is fabricated on an n-doped layer of silicon
with donor concentration cm fabricated on
an SOI wafer. In Fig. 5(a), the sketch of the simulated structure
extracted from an SEM image in [8] is shown. The SET con-
sists of two silicon side gates and of a silicon dot in the center
separated from source and drain by tunnel barriers. The silicon
layer is separated from the back gate by an oxide of 400 nm.

In Fig. 5(b), the equivalent circuit of the SET is shown, con-
sisting of two tunneling capacitances and between the
source and drain reservoirs and dot, respectively, two side gate

capacitances , and the dot-to-backgate capacitance .
The total capacitance can be expressed as

.
As explained in Section III, in order to estimate the device

capacitances shown in Fig. 5(b), we are primarily interested in
evaluating the electrochemical potential of the dot. In solving
the 3-D Poisson–Schrödinger equation for the computation of
the confinement potential, we have assumed that the central dot
region is a 3-D quantum confinement area even if it is con-
nected to the leads via tunneling junctions. This approximation
holds very well since typical conductance values through such
junctions are much smaller than the quantum conductance unity

, as further verified. In addition, since the silicon conduc-
tion band has six minima in the momentum space, the eigen-
value problem has to be solved three times, one of each axis of
the momentum space. Kohn–Sham orbitals of the six minima
are then grouped together and ordered in terms of increasing
eigenvalue. Therefore, each Kohn–Sham orbital has a degen-
eracy of four (two for spin and two for the couple of minima on
each momentum axis). In addition, if the 3-D quantum region
does not present regions of preferential confinement, the first
12 electrons occupy quasi-degenerate Kohn–Sham orbitals.

In Fig. 6, we show the electrochemical potential as a func-
tion of gate voltage for various . The corresponding capaci-
tance values computed via (11) are shown in Table III. We want
to emphasize that the capacitance values are very sensitive to
the geometry of the structure. This indicates the fundamental
role played by the extraction of a correct geometry from exper-
imental data. In fact, it can be readily seen that different 3-D
geometries may be extracted that are consistent with the scan-
ning electron microscopy (SEM) micrograph in [8]. To evaluate
such an aspect, we have performed simulations on two different
geometries [as shown in Table III(a) and (b)], both compatible
with the SEM image. In particular, in Table III, we show the ca-
pacitance values obtained for the two structures and the exper-
imental measurements given in [8]. Even if the results for the
structures shown in Table III(a) and (b) have the same order of
magnitude of the experimental data, it is clear that the results are
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Fig. 6. Electrochemical potential of the dot for a varying number of electrons
as a function of for the prismatic structure. Peaks correspond respectively
to and temperature is 4.2 K.

TABLE III
COMPARISON BETWEEN SIMULATION CAPACITANCE AND

EXPERIMENTAL DATA FOR THE SOI SET [8]

Fig. 7. Coulomb blockade oscillations obtained as is varied for the
prismatic structure. Temperature is 4.2, 7, 10, and 15 K. The oscillation period
is 0.1 V.

very sensitive to the dot shape. Indeed, SETs are structures very
sensitive to minimal variations of the sample and exhibit quite
different behaviors from sample to sample. It turns out that the
change of some nanometers in the dot size or the presence of
surface defects can significantly modify the expected character-
istics.

Finally, in Fig. 7, we plot the conductance oscillations cor-
responding to the intersection points in Fig. 6. Comparing our
results with the corresponding experimental curves in [8], we
verify that the conductances differ by a factor of ten, i.e., peaks
are approximately 10 S for simulations and approximately
10 S for experimental data, while the oscillation period is ap-
proximately 100 mV for simulations and approximately 50 mV

for experimental data. Discrepancies in the transport properties
are mainly due to the lack of information on the size and shape
of the dot. As shown in Table III, the choice of a different ge-
ometry of the same dot to obtain gate capacitances differing by
a factor of two is sufficient. Given only the partial knowledge of
the structure geometry and the sensitivity of tunneling conduc-
tance on the geometrical details, we believe that the agreement
with the experiment is satisfactory.

V. CONCLUSION

In this paper, we have presented a 3-D simulation approach
for nanoscale devices in which subregions with different types
of confinement are present, focusing in particular on SETs de-
fined by split gates on AlGaAs/GaAs heterostructures and on
SOI substrates. Indeed, SETs are a very useful testbench for as-
sessing the capabilities of codes for the simulation of nanoelec-
tronic solid-states devices.

We have shown that the method allows to take into account
the detailed geometry of the structure, and that the code allows
to compute parameters useful for a higher level description of
device behavior, in terms of normal and tunneling capacitances,
to be exploited by circuit simulators,

The 3-D self-consistent Poisson–Schrödinger equation has
been solved using efficient algorithms based on the NR algo-
rithm and on a Schrödinger solver operating in a reduced mo-
mentum space [7]. The conductance of 3-D tunneling constric-
tions has been computed by solving the 3-D Schrödinger equa-
tion with open boundary conditions with a scattering matrix
technique.

The code we have presented runs on a low-end workstation,
and may represent a valuable tool for the investigation and opti-
mization of nanoelectronic devices based on building blocks in
which carriers are strongly confined.
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