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Quasi-one-dimensional edge channels are formed at the boundary of a two-dimensional electron system
subject to a strong perpendicular magnetic field. We consider the effect of Rashba spin-orbit coupling, induced
by structural inversion asymmetry, on their electronic and transport properties. Both our analytical and nu-
merical results show that spin-split quantum-Hall edge channels exhibit properties analogous to that of Rashba-
split quantum wires. Suppressed backscattering and a long spin lifetime make these edge channels an ideal
system for observing voltage-controlled spin precession. Based on the latter, we propose a magnetless spin-
dependent electron interferometer.
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I. INTRODUCTION

Spin-dependent transport in semiconductors has attracted
a lot of interest recently due to intriguing new physics phe-
nomena that are observed experimentally or predicted
theoretically.1,2 Some of these may form the basis of future
device applications within the spintronics paradigm, where
information is coded and transferred using the spin degree of
freedom instead of charge.3 External magnetic fields and
magnetic contacts provide a possible means to control the
spin of charge carriers.4 Spin control via spin-orbit !SO" cou-
pling, which is interesting from a fundamental-physics
viewpoint5 and possibly useful for device application,6 has
gained prominence recently as an intriguing alternative to the
use of magnetic systems. In particular, the Rashba-type SO
coupling7–9 which arises from structural inversion asymme-
try in semiconductor heterostructures is of particular interest
to spintronics research, as its strength can be tuned by exter-
nal gate voltages.10–13
At the same time as enabling novel spin-dependent trans-

port effects, SO coupling is also responsible for spin-
relaxation phenomena that limit the operation of spintronics
devices. For mesoscopic electron transport in semiconduc-
tors, the Dyakonov-Perel mechanism14 is the dominant
source of spin relaxation. It is due to elastic scattering which
randomizes the orientation of momentum and, via SO cou-
pling, the spin orientation. This mechanism limits experi-
mental observation of coherent spin-dependent transport
phenomena, such as spin precession in magnetic fields or due
to the Rashba effect.5
Here we consider a system well-suited to the study of

spin-dependent transport effects, due to its relatively weak
spin relaxation: a two-dimensional !2D" electron system in

the integer quantum-Hall !QH" regime.15 The latter is real-
ized when a perpendicular magnetic field B is applied such
that the filling factor "=2#lB

2n2D assumes integer values
!here lB=#$ / $eB$ is the magnetic length, and n2D the elec-
tronic sheet density". Then a bulk incompressibility occurs in
the 2D electron system and, for a sufficiently steep confining
potential at the sample boundaries, transport is possible only
via chiral quasi-one-dimensional edge channels.16–18 The
spatial separation of right-moving and left-moving edge
channels by the incompressible bulk prevents backscattering.
Furthermore, long equilibration lengths between opposite-
spin QH edge states !of the order of 100 %m" have been
observed in GaAs-based samples.19,20 Spin flips induced by
impurity scattering in the presence of SO coupling were
found19,21 to be the dominant mechanism for spin relaxation
in the QH regime. Hence the typically stronger SO coupling
in InAs-based 2D heterostructures should reduce spin life-
times for QH edge channels realized in such samples. In-
deed, for identical quantum-well parameters !such as width,
sheet, and donor densities" and edge-channel profiles, the
ratio of spin-relaxation lengths lsf in the InAs and GaAs ma-
terials systems can be approximated, in the high-field limit,
by21,22

lsf
InAs

lsf
GaAs % & gInAsgGaAs

&' LsoInAsLso
GaAs(2 ) 0.1 typically. !1"

We have denoted the gyromagnetic ratio by g, and Lso is the
spin-precession length due to the strongest spin-orbit cou-
pling present in the respective materials *Rashba-type for
InAs, Dresselhaus-type23 for GaAs !Ref. 21"+. From our
rough estimate, we would expect the spin-flip length lsf in
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InAs-based QH edge channels to exceed tens of microns,
which is much larger than the spin-precession length Lso that
determines, e.g., the gate length in a spin-controlled field-
effect transistor.5,24 This motivates our study of spin-
dependent transport in Rashba-split QH edge channels.
Previous theoretical studies of magnetotransport in the

presence of Rashba spin splitting have focused on beating
patterns in the Shubnikov-de Haas oscillations,25,26 the Hall
resistance,26 and quasi-one-dimensional point-contact
conductances.27 The interplay between spin-orbit coupling
and cyclotron motion was discussed recently28 in the weak-
magnetic-field regime with particular emphasis on using
magnetic focusing to separate electrons according to their
spin state.29
In this paper we present a theory for QH edge states with

Rashba SO coupling in the strong field regime where the
Rashba spin splitting is much smaller than the cyclotron en-
ergy. We give an analytical approximation for the Landau-
level dispersions, both for the case when the Zeeman term is
negligible and when the Zeeman and Rashba splitting are
comparable. Our analytical results show that QH edge states
in the presence of Rashba SO coupling behave, as far as spin
precession is concerned, in a very similar way to Rashba-
split quantum wires.27,30,31 Furthermore, we study spin-
dependent transport in edge channels by means of the nu-
merical recursive-Green’s-function technique without
making any of the approximations that were necessary to
obtain analytical results. The numerical transport calcula-
tions allow us to test the validity of our analytical Landau-
level description when used to describe linear transport.
The paper is organized as follows. We introduce the the-

oretical description in Sec. II and give analytical results on
Landau-level dispersions. In Sec. III we present numerical
results on spin-dependent transport and test the validity of
approximations made in Sec. II. Section IV is devoted to a
discussion of an interferometer setup, suitable for observing
interference effects due to spin precession. Conclusions are
given in Sec. V.

II. THEORETICAL DESCRIPTION
AND ANALYTICAL RESULTS

In this section, we introduce the model Hamiltonian for
our system of interest. Analytical results are presented,
within certain approximations, for edge-channel energy dis-
persions and wave functions with Rashba SO coupling.
We study a two-dimensional electron system in the xy

plane, subject to a homogeneous perpendicular magnetic
field B=Bẑ, and confined laterally !in the y direction" by the
boundary potential V!y". Translational invariance in the x
direction suggests the use of the Landau gauge with vector
potential A=−Byx̂. Furthermore, we assume that the elec-
trons are subject to a SO coupling of the Rashba type,7 and
neglect the SO coupling arising from bulk inversion
asymmetry.23,32 This is reasonable as a first approximation to
describe realistic InAs quantum-well systems.33,34 The
Hamiltonian of the system is then given by H=H0+HR
+HZ, with

H0 =
1
2m*

*!px + eBy"2 + py
2+ + V!y" , !2a"

HR =
&R
$

*'xpy − 'y!px + eBy"+ , !2b"

HZ =
g
2

%BB'z =
"Z
2

'z, !2c"

where m* is the effective mass, e !(0" the electron charge, p!
the canonical momentum, &R measures the strength of
Rashba SO coupling, and %B= $e$$ /2me denotes the Bohr
magneton. In the following, it will be useful to express the
SO coupling strength in terms of a length scale, lR
=$2 / !m*&R", which is related to the spin-precession
length5,24 Lso mentioned in the previous section via lR
=Lso /#. Our study focuses on the high-field regime where
lB( lR.

A. Results in the absence of Zeeman splitting

We start by discussing the case of vanishing Zeeman split-
ting. The validity of this approximation is discussed in the
next section, where the effect of the Zeeman splitting on the
edge states is studied at the level of perturbation theory. We
furthermore neglect the term !&R/$"'xpy from the Rashba
Hamiltonian. This approximation, which we call longitudinal
SO approximation,30 turns out to be valid, in the high-field
regime, when the transverse width of the QH states is smaller
than the SO length lR and the transport becomes quasi-one-
dimensional *note that the transverse Rashba term
!&R/$"'xpy becomes important, e.g., at Landau-level
crossings28,35+. The Hamiltonian can now be written as

H̃ =
py
2

2m*
+
m*)c

2

2 'Ŷ + y − lB2lR'y(2 + V!y" , !3"

where Ŷ= !px /$"lB
2 sgn!eB" is the operator of the guiding-

center coordinate for cyclotron motion, and )c= $eB$ /m* the
cyclotron frequency. In writing Eq. !3", we have neglected a
constant energy shift of order $2 / !m*lR

2 ", which is small com-
pared to the cyclotron gap. For the eigenfunctions of Hamil-
tonian !3", we make the Ansatz

*n,Y,'!x,y" = eiYx/lB
2
+n,Y,'!y"$'y, , !4"

where $'y, is the eigenspinor of the Pauli matrix 'y with
eigenvalue '= ±1. Substituting Eq. !4" in the Schrödinger
equation, we find the eigenenergies

En!Y" = En
!0"'Y − '

lB
2

lR
( . !5"

Here En
!0"!Y" are the Landau-level dispersions in the absence

of Rashba SO coupling. The transverse eigenfunctions are
given by

+n,Y,'!y" = +n,Y−'!lB
2 /lR"

!0" !y" , !6"

where +n,Y
!0" !y" are the corresponding transverse eigenfunc-

tions without Rashba SO coupling.
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At this point a few comments are necessary. Within the
longitudinal SO approximation, the effect of the Rashba SO
coupling is to shift Landau levels with different spin quan-
tum number ' in the guiding-center quantum number Y. An
example of a Landau-level dispersion is shown in Fig. 1. In
this limit, a global spin-quantization axis exists, which is
perpendicular to the system boundary and in the plane of the
2D electron system. This is analogous to what happens in
quantum wires in the weak-SO-coupling regime.31 For any
fixed energy value lying within the bulk-Landau-level gap,
there are two eigenstates having different guiding-center co-
ordinates Y±, corresponding to different wave vectors Y± / lB

2

for particle motion parallel to the edge. As these properties
are those on which the design of a spin-controlled field-effect
transistor !SpinFET" relies,5 we can conclude that a proto-
type of the SpinFET could be implemented using QH edge
channels. Such a system would realize the ideal situation of a
highly one-dimensional transport regime27 and slow spin re-
laxation from elastic scattering.
The quantum numbers Yn,' of the guiding-center coordi-

nate in the y direction for edge states at a fixed energy E are
given by

Yn,' = Yn
!0" + 'lB

2/lR, !7"

where Yn
!0" satisfies En

!0"!Yn
!0""=E. The guiding-center separa-

tion for states at fixed energy turns out to not depend on this
energy or the Landau-level index n; we find

,Y = 2lB
2/lR. !8"

It is important to notice that the density profile in confine-
ment direction for wave functions !6" corresponding to spin-
split edge states *i.e., with guiding centers Yn,' given in Eq.
!7"+ is the same, and is simply $+

Yn
!0"

!0" !y"$2. This last remark
means that although edge states with different spin are
shifted in their guiding-center quantum number, they are not
spatially separated !see Fig. 2".
For small lB / lR, we can expand the Landau level disper-

sion Eq. !5" to first order around Y, obtaining

En!Y" % En
!0"!Y" − '

lB
2

lR

!En
!0"!Y"
!Y

. !9"

From Eq. !5", and even more from Eq. !9", it is apparent that
bulk Landau levels, which are nondispersive, are not affected
to first order in lB / lR by Rashba SO coupling. This is in
agreement with the exact solution for bulk Landau levels
given in Ref. 7, where the first nonvanishing correction to
eigenenergies is quadratic in lB / lR.

B. Effect of finite Zeeman splitting

In the previous section, we neglected the Zeeman effect.
We now discuss how a finite but small Zeeman splitting af-
fects spin precession in QH edge channels.
The value of spin splitting due to the Zeeman effect can

be expressed as

"Z =
gm*

2me
$)c, !10"

whereas the Rashba spin spitting for an edge state with guid-
ing center Y is given by

"R!Y" = 2
lB
2

lR

!En
!0"!Y"
!Y

=
2$

lR
vn

!0"!Y" . !11"

Here vn
!0"= !lB

2 /$"!En
!0" /!Y is the group velocity of edge states

on the nth unperturbed Landau level. For a boundary confin-
ing potential that is rising sharply on the scale of the mag-
netic length, it can be estimated as vn

!0"%)clB, yielding

& "Z
"R
& = g4m*me lRlB = 0.74g#B*T+

&R*10−12 eV m+
. !12"

For typical values in InGaAs heterostructures,11,13,36 the Zee-
man splitting becomes comparable to the Rashba spin split-
ting at a magnetic field of )8 T. Note, however, that edge
velocities at soft sample-boundary potentials can be an order

FIG. 1. !Color online" Dispersion of the lowest Landau level,
calculated within the longitudinal SO approximation, for a hard-
wall confining potential of width W. The labels ↑, ↓ refer to eigen-
values of 'y. The parameters used are Lso/ lB=21.3 and W / lB=8.9.

FIG. 2. !Color online" Transverse probability-density profile for
spin up !top" and spin down !bottom" right-moving edge states at a
fixed energy E=$)c. The transverse probability densities, shown
here, correspond to the states marked by dots in Fig. 1. The spin
labels ↑, ↓ refer to eigenvalues of 'y. Parameters are the same as in
Fig. 1.
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of magnitude smaller than the estimate used above.
In the situation when the Zeeman and the Rashba splitting

are comparable and both are much smaller than $)c, we can
perform a perturbative calculation, finding for the Landau-
level dispersions21

En
±!Y" = En

!0"!Y" -
1
2
#"R!Y"2 + "Z

2 . !13"

After performing a perturbative calculation on a spin-
degenerate subspace, we find that the orbital part of the
eigenfunctions is unchanged, while the eigenspinors read

.+!Y" = ' sin*/!Y"/2+
i cos*/!Y"/2+ ( ,

.−!Y" = ' cos*/!Y"/2+
− i sin*/!Y"/2+ ( , !14"

with tan*/!Y"+="Z/"R!Y". If we set "Z=0 in Eqs. !13" and
!14" we find the Landau level dispersions given in Eq. !9",
and the eigenspinors become $'y,. In the presence of the
Zeeman term, the eigenspinor quantization axis depends on
Y. In particular, it does not lie anymore in the xy plane, but it
sticks out of it; the in-plane component remaining still per-
pendicular to the boundary !i.e., parallel to y". The new
eigenspinors Eq. !14" are parallel to the effective magnetic
field Beff!Y"=B+BR!Y", where BR is the effective Rashba
field !the Rashba term can be viewed as a Zeeman term with
a momentum-dependent magnetic field", which in our case is
BR!Y"=−*"!Y" /g%B+ŷ.

III. SPIN-DEPENDENT TRANSPORT:
NUMERICAL RESULTS

Our results obtained in the previous section showed that,
within the longitudinal SO approximation and for vanishing
Zeeman splitting, QH edge-channel eigenspinors are polar-
ized in the direction perpendicular to the sample boundary
and in the plane of the QH system. In that situation, spin
precession will occur for edge electrons with spins parallel to
the edge or perpendicular to the 2D system, which can be
injected, e.g., by a magnetic contact. This is entirely analo-
gous to the operational principle of a SpinFET.5 To test the
validity of the underlying approximations made to obtain our
analytical results, we have studied spin-dependent edge-
channel transport, in the presence of Rashba SO coupling
and Zeeman splitting, numerically without making any of the
approximations of the previous section.
We compute total and spin-polarized linear conductances

for a QH system of finite width W within the framework of
the Landauer-Büttiker theory,37 assuming the zero-
temperature limit. A tight-binding model is adopted to de-
scribe the Hamiltonian of the system,30 and we use a recur-
sive method to obtain the total Green’s function of the
system.38–40 Projecting the Green’s function on asymptotic
waves in the leads and on spin-up and spin-down eigens-
pinors, transmission and reflection coefficients are immedi-
ately obtained.39,41 The conductance is expressed by the
Landauer-Büttiker formula

G =
e2

h -
nn!

-
''!

$tn!n
'!'$2, !15"

where the sum runs over all incoming and outgoing chan-
nels, and tn!n

'!' is the transmission amplitude from mode n
with spin ' to mode n! having spin '!. We assume that the
system is attached to external leads with the same homoge-
neous magnetic field as present in the sample, but without
SO coupling. In the external leads, we choose z as spin quan-
tization axis and, in this section, “up” and “down” always
refers to eigenspinors of 'z. This convention is motivated by
the fact that real spin-polarizing magnetic contacts to any
QH system will have their magnetization parallel to the large
external magnetic field. Together with the total conductance,
we calculate G'↑, i.e., the conductance obtained by injecting
a spin-up current and detecting a spin-' current at the output
contact.
In Fig. 3 we show examples of spin-polarized conduc-

tances, plotted as a function of the inverse magnetic field, for
a fixed Fermi energy. The total conductance G↑↑+G↓↑ !for
injection of up-spins" presents the usual steplike behavior,
whereas the spin-polarized ones have an irregular shape that
depends on the spin precession length.

FIG. 3. !Color online" Spin-polarized conductances as a func-
tion of the inverse magnetic field 1/$)c for fixed Fermi energy
EF=0.03 eV, which corresponds to three propagating transverse
modes at zero magnetic field. The blue line represents G↑↑, the red
line G↓↑, and the black line G↑↑+G↓↑. In plot !a" no Zeeman cou-
pling is present, i.e., the gyromagnetic factor is g=0, whereas in
plot !b" we have g=−15. The other parameters are L /0F=40,
W /0F=2, and LSO=L /5, 0F denotes the Fermi wavelength.
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In Fig. 4 we test the validity of the longitudinal SO ap-
proximation. We plot G↑↑ as a function of the SO coupling
strength, computed with and without the longitudinal SO ap-
proximation. The two curves coincide perfectly for small
Rashba coupling and start differing slightly when the SO
coupling becomes large.
Now, we turn our attention to the interplay between the

Rashba SO coupling and the Zeeman splitting.42 In Fig. 5 we

show spin-polarized conductances as a function of both
g-factor and SO coupling strength !expressed in terms of the
spin precession length". The effect of the Zeeman splitting is
to induce a finite z-component in the effective magnetic field
Beff around which the spin precesses. When g=0, the effec-
tive field Beff lies in the plane of the 2D electron system and,
hence, a large current modulation occurs for electrons in-
jected with spin quantized in the z direction. As Zeeman
splitting is turned on and increases, eigenspinors tend to
align with the direction of the external magnetic field, i.e.,
the z-direction. Spin precession for electrons injected with
their spin polarized in that same direction will then be re-
duced. As this is the situation to be expected in realistic
samples, we conclude that the presence of the Zeeman split-
ting has a negative effect on the SpinFET operation.

IV. SPIN-DEPENDENT EDGE-CHANNEL
INTERFEROMETERS

In this section we investigate the possibility to observe
spin-dependent interference effects between edge channels.
This study is motivated by a recent experimental realization
of an electronic analog of the optical Mach-Zehnder
interferometer.43 Spin-dependent electron interferometry
based on Rashba spin splitting has recently been discussed,
in zero magnetic field, in Refs. 44 and 45.
Edge channels are a very useful tool to construct elec-

tronic analogs of optical experiments due to their chiral na-
ture. Key elements of many optical interferometers are beam
splitters and waveguides. Both these building blocks have
been realized for electron waves in suitably designed
nanostructures.43 The schematic setup of a possible spin-
dependent edge-channel interferometer is sketched in Fig. 6.
A right-moving edge channel is split by QPC1 into two dif-
ferent outgoing channels. These two states travel along a
straight segment of length L, perform an abrupt bend and,
after another segment of length L, interfere at QPC2. For
simplicity, we assume here a hard-wall reflection for the tran-
sition between parts 1 and 2 in each interferometer arm.
Qualitatively similar results to those reported below will be

FIG. 4. !Color online" Conductance G↑↑ of the spin-up edge
channel at filling factor 1, computed both with transverse Rashba
term !solid line" and without it !dashed line" and plotted here as a
function of the Rashba SO coupling strength. The Zeeman coupling
is set to zero. The other parameters are E /$)c=1, L /0F=40, and
W /0F=2.

FIG. 5. !Color online" G↑↑ !a" and G↓↑ !b" plotted as a function
of SO coupling strength and the g-factor g, at filling factor 1. The
red line represents the points for which $"R/"Z$=1. !We computed
"R assuming vn

!0"=)clB, which is appropriate for a sharp edge po-
tential." The other parameters are EF /$)c=1, L /0F=40, and
W /0F=2.

FIG. 6. !Color online" Schematic view of the simplest interfer-
ometer setup. A right-moving edge channel !blue solid line" moving
from lead a to lead b is split, via a first quantum point contact
!QPC1", and recombines at a second quantum point contact
!QPC2". The left-going edge channel !blue dashed line" formed at
QPC2 is absorbed by the probe c in order to avoid additional
interference.
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obtained for a more gradual, or even adiabatic, change of
propagation direction where Berry phases become important.
We consider the case of one propagating edge channel

!filling factor 1" and the presence of both Rashba and Zee-
man splittings. The question we want to answer is whether a
current modulation can be induced by varying only the
strength of Rashba SO coupling. Let us discuss, for the sake
of simplicity, the situation depicted in Fig. 6. If the incident
spinor 1in is split evenly at QPC1, the outgoing spinor at
QPC2 reads

1out =
1
#2 *Rn̂1Rn̂2e

+#i2/20 + Rn̂2Rn̂1e
−#i2/20+1in, !16"

where 2 is the magnetic flux encircled by the closed edge-
channel loop, 20=h /e is the magnetic flux quantum, and
Rn̂1,n̂2 are rotation operators in spin space which describe spin
precession. The precession axis is parallel to the direction of
the effective magnetic field, which depends on the directions
of the electron motion and the Zeeman field. In our simple
setup, it can be directed along n̂1 and n̂2, depending on the
side of the interferometer on which the electron is traveling
!see Fig. 6". Explicitly, the rotation operator reads

Rn̂j = e
−i!#L/Lso"'! ·n̂j , !17"

with j=1,2, and '̂ denoting the vector of Pauli matrices. Let
us consider the case 2 /20=n !constructive interference due
to the magnetic field". To obtain destructive interference in
this situation, we need that

Rn̂1Rn̂2 + Rn̂2Rn̂1 = 0 !18"

holds. If the sides of the interferometer are perpendicular and
the Zeeman term is negligible, the two directions n̂1 and n̂2

are orthogonal and, hence, 'n̂1'n̂2+'n̂2'n̂1=0. If this is the
case, the condition Eq. !18" for destructive interference be-
comes L= !n+1/2"Lso. A similar result was found in Ref. 46
where the localization of electrons in quantum-coherent net-
works due to Rashba SO coupling was discussed. We con-
clude that by varying the Rashba coupling in our interferom-
eter configuration realized with edge states, it is possible to
obtain a current modulation at a fixed magnetic field. This
setup would be a realization of the spin interferometer pro-
posed in Ref. 44, which is based on spin precession due to
the Rashba effect in a ring geometry.

V. CONCLUSIONS

We have obtained analytical results, valid in the high-
magnetic-field regime, for quantum-Hall edge channels in
the presence of Rashba spin-orbit coupling and Zeeman
splitting. Rashba spin precession is expected to occur due to
the relative shift of spin-polarized Landau levels in guiding-
center direction. Furthermore, we have presented results on
the effect of spin precession on edge-channel transport ob-
tained by a recursive Green’s-function method. Finally, we
have proposed the realization of a spin-dependent interfer-
ometer based on spin-precession of electrons in quantum-
Hall edge channels.
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