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Abstract
We present numerical simulations of the transport properties of a ballistic
cavity connected to two leads in the presence of a finite degree of
decoherence. The cavity is obtained by realizing a ‘quantum chicane’, i.e.,
by shifting a short section of a quantum wire defined by etching on a SiGe
heterostructure. We compare our results with experiments by Scappucci
et al (2004 Trends in Nanotechnology (Segovia, Spain, Sept. 2004)
unpublished) and show that the magnetoconductance features can be
reproduced if we use a recently developed model that includes decoherence
with a phenomenological statistical description. Otherwise, simulations
based on completely coherent transport would provide a much richer
structure of magnetoconductance, that in experiments is smoothed out by
dephasing processes. In particular, we recover experimental features of the
magnetoconductance such as magnetic focusing and Shubnikov–de Haas
oscillations. By computing the local partial density of states of the system at
different values of the external field we recover the semiclassical orbits.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Mesoscopic devices such as ballistic cavities deal with
physical phenomena governed both by quantum mechanical
mechanisms, such as interference due to the phase coherent
propagation of the wavefunction, and by semiclassical
mechanisms, when a large number of conducting channels
contribute to transport.

Weak localization (WL) originating from enhanced
backscattering and Shubnikov–de Haas (SdH) oscillations
of the magnetoconductance originating from magnetic
quantization of energy levels belong to the first category [2, 3].
Magnetic focusing (MF) due to commensurability between the
classical cyclotron orbit rc and the cavity length belongs to
the latter [4–6]. Such conductance modulations are usually
controlled by varying the carrier density through gate voltages
or by varying the externally applied magnetic field.
3 Present address: CEA-LETI—17 rue des Martyrs 38054 Grenoble, France.

In the ballistic transport regime, and when the temperature
is of the order of few tens of mK, so that temperature smearing
is negligible, other resonance phenomena such as multiple
reflections in the cavity may occur, that lead to rapid and
wide oscillations of the conductance when a gate voltage
or the magnetic field are swept, so that other conductance
modulations are not visible anymore.

Luckily, in experiments it often occurs that only magnetic
focusing and SdH oscillations are observed, since they are
more robust to the effects of decoherence due to interaction
with the environment [4, 7, 8]. Therefore, from the simulation
point of view, we can observe MF and SdH oscillations if we are
able to introduce a finite degree of dephasing in the transport
mechanism.

In this paper we present numerical simulations of
magnetotransport in a ballistic cavity obtained by transversally
shifting the central section of a quantum wire defined on an
SiGe heterostructure and hence generating two constrictions
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behaving as quantum point contacts. Such a structure has
been experimentally fabricated and characterized as described
in [1, 9]. We obtain the 2D confining potential by computing
the first subband profile from a self-consistent solution of
the 3D Schrödinger–Poisson equation on the whole structure
and compute the magnetoconductance and the local partial
density of states with a code based on the computation of the
scattering matrix of the system. The effect of dephasing on
the transport properties is included with a statistical treatment
of the dephasing process described in a recent work [10].
We are able to recover MF and SdH oscillations of the
magnetoconductance as well as semiclassical orbits of carriers
inside the cavity. The local partial density of states in the
structure can be used to investigate the occurrence of internal
orbits which resemble classical motion [8, 6].

The paper is organized as follows. In section 2 we present
the methods used to compute the electrostatic and transport
properties of the structure in the case in which a coherent
transport regime is considered. In section 3 we briefly describe
the statistical model for dephasing. Results obtained for a
strained Si–SiGe ballistic cavity in the cases of both coherent
and partially incoherent transport regimes are presented.

2. Physical model

In this section we consider the physical models used to simulate
the transport properties of the SiGe ballistic cavity. First, in
order to solve the many body Schrödinger equation with the
mean field approximation in a realistic structure, we solve the
nonlinear Poisson equation in three dimensions:

∇ [ε(r)∇φ(r)] = −q[p(r) − n(r) + N+
D(r) − N−

A (r) + ρfix],
(1)

where φ is the electrostatic potential, ε is the dielectric
constant, p and n are the hole and electron densities,
respectively, N+

D is the concentration of ionized donors, N−
A

is the concentration of ionized acceptors and ρfix is the fixed
charge density.

The electron density in strongly confined regions is
computed by solving the Schrödinger equation with density
functional theory in the local density approximation [11–13].
The hole density and the electron density in other regions are
computed with the semiclassical expression. The Schrödinger
equation for Kohn–Sham single electron states reads

− h̄2

2
∇[m−1(r)∇$(r)] + V(r)$(r) = E$(r), (2)

where h̄ is the reduced Planck’s constant, m is the effective
mass tensor, and $ and E are the eigenfunctions and the
eigenvalues, respectively. The confining potential V can be
expressed as V = Ec + Vexc, where Ec is the conduction band
edge and Vexc is the exchange–correlation potential [14]:

Vexc = − q2

4π2ε0εr

[
3π3n(r)

] 1
3 . (3)

The coupled Poisson and Schrödinger equations are solved
by means of a multigrid algorithm [15]. The Schrödinger
equation is solved at the finest grid of each V-cycle along
the vertical direction where quantum confinement is present.

In the strained silicon channel the 1D Schrödinger equation is
solved three times, one for each pair of minima of the silicon
conduction band. Once we obtain band and density profiles at
quasi-equilibrium, we can compute the transport properties of
the device. In the following, the same band profile obtained
at zero magnetic field is used to compute all the points of the
magnetoconductance curve, assuming negligible corrections
to the potential due to the change of the external magnetic
field. In this way, the computational resources required are
still tractable.

We obtain the quantum conductance G at zero temperature
using the Landauer–Büttiker formula [16, 17] that expresses
G as a function of the transmission matrix t . The conductance
of a generic device depends on the transmission probability
matrix T = t t† through the formula

G = g
e2

h

∑

n

Tn, (4)

where g is the degeneracy factor (g = 4 in our case due to
both spin and valley degeneracy) and the sum is over the all the
eigenvalues Tn of the transmission probability operator T . The
numerical method is based on the computation of the scattering
matrix of the conductor. First, the domain is subdivided into
several slices along the propagation direction. For each slice j
one can easily compute the scattering matrix S j by solving the
2D Schrödinger equation with Dirichlet boundary conditions
on the transversal cross section and by enforcing continuity
of the wavefunction and of the probability current density
between adjacent slices. S j has the form

S j =
(

r j t ′
j

t j r ′
j

)
, (5)

where t j (t ′
j ), and r j (r ′

j ) are the transmission and reflection
matrices, respectively, from left to right (right to left). In order
to compute the total scattering matrix ST, it is sufficient to
compose all the S j matrices [3].

Finally, the presence of a magnetic field B = B ẑ
perpendicular to the propagation plane xy is taken into account
by adopting the transverse gauge A = Bx ŷ = A(x)ŷ for
the vector potential A = ∇ × B. The new Hamiltonian can
be written as the sum of two terms: H(x, y) = Htrans(y) +
Hlong(x), where Htrans = [py −e A(x j )]2/2m y + V (y) refers to
the transversal part of the Hamiltonian and Hlong = p2

x /2mx

to the longitudinal one. The eigenvectors are given by the
product of the eigenvectors for the two Hamiltonians, that are
plane waves for Hlong and

χn, j (y) = χ0
n, j (y) exp[−ie A(x j )y/h̄] (6)

for Htrans, where χ0
n, j (x) are the solutions in the case B = 0.

Furthermore, with this gauge, the eigenvalues E j,n are not
altered by the presence of the magnetic field. We note that the
condition for the validity of the discretization of Htrans is that
the magnetic flux through a generic slice [A(x j+1)− A(x j )]W
is much smaller than the quantum unit of flux h/e, where W
is the transverse device length [18].

3. Dephasing model

In this section we briefly describe a phenomenological
approach for including dephasing in the simulation of
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Figure 1. Quantum cavity obtained from a quantum wire defined by
etching on an SiGe heterostructure. Dimensions refer to the
structure considered in the simulations.

mesoscopic devices based on the scattering matrix technique.
Such a method treats decoherence as a random fluctuation
of the phase of the propagating modes involved in the
computation of the scattering matrix, and enables us to obtain
average conductances and noise spectra from a sufficiently
large ensemble of Monte Carlo simulations. A detailed
description of the method can be found in [10].

Usually, ballistic transport in mesoscopic structures is
addressed in the framework of the Landauer–Büttiker theory of
transport, [16, 17] which does not allow for including directly
the effects of dephasing. Such effects are normally treated with
phenomenological models, based on the insertion of a virtual
voltage probe [19] into the ballistic region: electrons travelling
from source to drain can be absorbed by the third probe, where
they lose their phase information before being re-injected into
the conductor. Alternatively, the effect of dephasing can be
modelled by adding an imaginary potential to the Hamiltonian
in the device region [20, 21], which acts as an absorber of the
wavefunction, and introducing an adequate mechanism for the
re-injection of phase-randomized particles, in order to ensure
continuity of the total current probability density.

Our technique is based on a phenomenological
microscopic model, which captures the effect of elastic
interactions in terms of a random term added to the phase of the
single particle wavefunction. Given the random character of
scattering events, each Monte Carlo run provides a particular
occurrence of the reduced single particle scattering matrix.
Average transport properties are obtained from large samples
of Monte Carlo runs.

We introduce in our description the effects of decoherence
as a dephasing of the wavefunction. The scattering matrix S j of
the j th slice can be seen as the composition of two submatrices:
one takes into account the interface between adjacent slices,
and the other takes into account coherent propagation in the
slice. Such a latter S-matrix has zero reflection matrices and
diagonal transmission matrices, whose mth element is eik j,m d j

where d j = x j+1 − x j and k j,m is the wavevector of the mth
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Figure 2. Profile of the first subband for electrons in the vicinity of
one constriction.

mode in the j th slice. We modify each element by adding
a random phase φR so that the generic diagonal element of
the transmission matrix is ei(k j,m d j +φR) and φR is extracted by a
random number generator and obeys a zero average Gaussian
distribution with variance σ 2

j = d j/ lφ .
The total scattering matrix obtained in such a way only

represents a particular occurrence of the reduced scattering
matrix of the single particle. The average reduced scattering
matrix is obtained by averaging the conductance over a
sufficient number of runs, typically of the order of one hundred.
In this way we take into account the intrinsic statistical
character of the dephasing process. We emphasize that the
usual properties of the scattering matrix S, such as unitarity
SS† = I and the Onsager–Casimir relations [22] for the
reciprocity relations of the scattering matrix, still hold [10].

Further, we note that the model can be easily generalized
whenever a tight-binding representation of the Hamiltonian is
used to compute the transmission probability with recursive
Green’s function methods and that can be used to study the
full current statistics of the structure allowing for addressing
the effects of dephasing also on the shot noise and higher
cumulants of the current [23].

4. Magnetoconductance of SiGe cavities

We now present results from our simulations of the considered
cavity. The structure is depicted in figure 1 and consists of an
SiGe heterostructure with the same layer structure described
in [9]. Quantum confinement is present along the growth
direction and a 2D electron gas is located in the strained-Si
channel.

A quantum wire with a width of 250 nm is considered and a
section of a length of 570 nm is laterally shifted in order to form
a cavity separated from the leads by two quantum constrictions.
The two constrictions have a geometrical width of 80 nm, and a
much smaller electrical width, as shown in figure 2, where the
lowest 2D subband for electrons near one constriction is shown,
as obtained from the 3D Poisson–Schrödinger solver. The
mesh size used varies from 0.5 to 2 nm along the longitudinal
direction (x-axis) and is fixed to 2.5 nm along the y-axis.

The magnetoconductance obtained by Scappucci et al [1]
presents at 50 mK three magnetic focusing oscillations with
conductance peaks at B = 0.1, 0.25, and 0.43 T, and minima
for B = 0.17, and 0.33 T. For higher magnetic field, SdH
oscillations appear, whose frequency allows us to extract an
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Figure 3. Magnetoconductance of the device shown in figure 1. The
solid (blue) curve corresponds to the case lφ → ∞, the dashed
(black) curve corresponds to the case lφ = 5 µm, and the
dot–dashed (red) curve corresponds to the case lφ = 1 µm.

electron density of about 7×1011 cm−2. From such a value of
the electron density we can infer that only one mode propagates
through each constriction.

In figure 3 we show the magnetoconductance of the cavity
for a Fermi energy of EF = 3 meV, corresponding to only
one propagating mode through the constriction. We plot the
coherent case (solid curve, lφ → ∞), the case lφ = 5 µm
(dashed curve), and lφ = 1 µm (dash–dotted curve). The
partially coherent cases are obtained from a Monte Carlo
simulation on an ensemble of 300 runs as described in section 3.
Let us stress the fact that resonances due to multiple reflections
in the cavity are destroyed by the effect of decoherence. Such
resonances are not present in the coherent calculations at high
magnetic field, when transport occurs through edge channels.
The second effect of the decoherence is to reduce the amplitude
of tunable resonances due to MF and SdH oscillations.

The first three maxima of the magnetoconductance are
obtained for B = 0.04, 0.23, 0.43 T, minima appear for
B = 0.12, 0.35 T. The agreement with the experiment is
very good, also considering the fact that the geometry of the
simulated structure only approximates the actual geometry.

Finally, in figure 4 we show the colour plot of the local
partial density of states of the system for three specific values
of the magnetic field corresponding to two MF peaks in the
magnetoconductance plot (states injected from the left) and
one minimum. The local density of states ρ(xi , y j , E) =
|$(xi , y j , E)|2 is computed by calculating the wavefunction
of the system at each point (xi , y j) of the grid with a recursive
scattering matrix method. It is interesting to verify that for
B = 0.23 and 0.43 T we are able to appreciate the pattern
of the semiclassical orbit. For B = 0.23 T we have L ∼ rc,
and for B = 0.43 T we have L ∼ 2rc. For B = 0.35 T,
corresponding to a conductance minimum, the local density of
states reveals very complicate trajectories.

5. Conclusion

In this paper we have presented a numerical simulation of the
transport properties of a strained Si–SiGe ballistic cavity. In
particular we studied the effects of environmental dephasing
in attenuating the oscillation amplitudes and in cancelling
dense resonances due to multiple scattering inside the cavity.

Figure 4. Local partial density of states in the silicon ballistic cavity
(states injected from the left) for B = 0.23 T (top), B = 0.35 T
(centre), and B = 0.43 T (bottom).

We were able to destroy such uncontrolled resonances and
to preserve magnetoconductance oscillations by choosing a
degree of decoherence with a coherence length slightly larger
than the structure length. Moreover, we presented simulations
of the density of states of the system when the applied magnetic
field is such that the cyclotron radius is commensurable with
the size of the cavity or with a sub-multiple and recover patterns
of semiclassical orbits, ensuring the semiclassical origin of
such resonances.
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