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Shot noise in resonant-tunneling structures
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We propose a quantum-mechanical approach to noise in resonant-tunneling structures that can be applied in
the whole range of transport regimes, from completely coherent to completely incoherent. In both limiting
cases, well-known results which have appeared in the literature are recovered. Shot noise reduction due to both
Pauli exclusion and Coulomb repulsion, and their combined effect, are studied as a function of the rate of
incoherent processes in the well �which are taken into account by means of a phenomenological relaxation
time�, and of temperature. Our approach allows the study of noise in a variety of operating conditions �i.e.,
equilibrium, subpeak voltages, second-resonance voltages�, and as a function of temperature, explaining ex-
perimental results and predicting interesting results, such as the dependence of noise on filled-emitter states and
the prediction of both increasing and decreasing shot noise with increasing temperature, depending on the
structure. It also allows the determination of the major contributions to shot-noise suppression by performing
noise measurements at the second-resonance voltage. �S0163-1829�97�03207-4�

I. INTRODUCTION

In recent years, researchers have shown an increasing in-
terest in noise in resonant-tunneling structures. In fact, from
an experimental point of view, noise measurements can pro-
vide information about the structure and the transport prop-
erties of resonant-tunneling devices complementary to those
given by dc characteristics and small signal ac responses. On
the other hand, the correct prediction of noise properties is a
good check for the validity of transport models for such de-
vices.
Lesovik1 predicted that, in the case of completely coher-

ent transport, shot noise could be lower than its classical
value for totally independent electron crossings through the
structure, i.e., the so-called full shot noise;2 Li and
co-workers3 showed the first experimental evidence of such a
phenomenon in double barrier diodes.Since then, many theo-
retical studies appeared in the literature, based on both
coherent4–9 and semiclassical models,10–17 while few experi-
mental results are available.3,13,16,18–22 If the time of obser-
vation T is much longer than the average time �T an electron
takes to traverse the whole device, the noise spectral density
at low frequencies (�1/�T) can be reduced only if consecu-
tive current pulses are correlated, i.e., if the pulse distribution
is sub-Poissonian.2 Two are the mechanisms which have
been considered responsible for introducing such a correla-
tion in resonant-tunneling structures: Pauli exclusion,9–12 and
electrostatic repulsion,13,14 which both tend to smooth fluc-
tuations of the number of electrons in the well region.
In agreement to what seems to be confirmed by experi-

mental measurements, most theoretical studies predict a
maximum suppression of one half of the classical shot-noise
value, which can be obtained if the transmission probabilities
of the two barriers are equal.23 However, it is most astonish-
ing that such results have been obtained both with
coherent1,4–6,8,11,19 and semiclassical10,11 models, and even if
time correlations between consecutive traversals of the two
barriers are discarded.24

In this paper, we propose an approach addressing noise
properties of generic resonant-tunneling structures in the
whole range of transport regimes, from completely coherent
to completely incoherent, from a quantum-mechanical view-
point. In the limit of coherent transport the result of Lesovik1
is recovered, while, in the opposite limit of loss of coherence
for all electrons traversing the well, the semiclassical results
of Davies11 are obtained. We also consider the combined
effects of the Pauli exclusion and of the Coulomb repulsion,
and show that a maximum shot-noise suppression of one half
is to be expected independently of the coherence of trans-
port, at least up to a given amount of collisions in the well.
We also study noise behavior of resonant-tunneling struc-

tures in various bias conditions, i.e., equilibrium, subpeak
voltages, and second-resonance voltages. In particular, as a
check for our model, we recover the Johnson-Nyquist25 noise
at equilibrium. Moreover, we study noise dependence on
temperature, which has been measured experimentally,20 but
has received little attention from a theoretical point of view.
The outline of the paper is as follows: in Sec. II we dis-

cuss our model for transport in resonant-tunneling structures
and for transitions through the barriers, and introduce the
simplifications and approximations needed to address the
problem analytically. In Sec. III we calculate the time-
dependent currents and the current power spectral density,
while in Sec. IV we focus on noise in typical operating con-
ditions, i.e., various applied voltages and operating tempera-
tures. The particular case of large well structures �where the
characteristic time for fluctuations of the number of carriers
in the well is larger than the time of observation� is ad-
dressed in Sec. IV. The Summary section ends the paper.

II. MODEL

In a recent paper,26 it has been shown that the sequential
tunneling approach can be adopted to describe the whole
range of transport regimes in resonant-tunneling structures,
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from purely coherent to completely incoherent. This ap-
proach is applicable when the structure can be seen as con-
sisting of three isolated regions � l , �w , and �r , i.e., the
left reservoir, the well region, and the right reservoir, respec-
tively, that are weakly coupled through the two tunneling
barriers 1 and 2, as is sketched in Fig. 1, so that first-order
perturbation theory is applicable.
Let each allowed state in � l , �w , �r be characterized by

a set of parameters � l , �w , �r , respectively. The density of
states and the occupation factor in region �s (s�l ,w ,r) are
�s(�s) and f s(�s), respectively. Following Bardeen,27 tun-
neling is treated as an electronic transition between levels in
different regions. Given that first-order perturbation theory is
applicable, tunneling probabilities per unit time are given by
the Fermi ‘‘golden rule.’’28
We also take into account the effects of elastic and inelas-

tic collisions in the well by means of a single phenomeno-
logical relaxation time �coll : an electron in the well has a
probability dt/�coll of experiencing a collision in the infini-
tesimal time interval dt , and electrons emerge from colli-
sions with a thermal quasiequilibrium energy distribution
and a completely random phase. Based on a similar model
�in which a relaxation length was used instead of a relaxation
time�, a compact formula for the density of states in a quan-
tum well has been obtained.29
It is worth noticing that in the relaxation-time

approximation30 all collisions are effective in randomizing
phase and relaxing energy. For simplicity, we adopt this
model, and we do not discuss the details of the energy de-
pendence of the relaxation time. In fact, for the purpose of
this paper, we just need to be aware of the fact that collisions
affect the density of states by broadening and lowering the
resonance peaks,31–34 and affect also the occupation factor
f w in the well, which we divide into three components,26

f w��w�� f w0��w�� f w
l ��w�� f w

r ��w�, �1�

where f w0 is the Fermi-Dirac occupation probability associ-
ated to the quasi-Fermi level E fw in the well, and f w

l and
f w
r are the occupation factors for electrons which have come
from the left and the right electrodes, respectively, and have
not undergone a collision in the well.

Suppose that N electrons are in the well: the probability
that in the time interval dt an electron enters the well
through barrier m (m�1,2) is gm(N)dt . Following Davies
et al.11 we call gm(N) the ‘‘partial generation rate’’ for bar-
rier m . The probability that in the time interval dt an electron
escapes from the well through barrier m is rm(N)dt , where
rm(N) is the ‘‘partial recombination rate’’ for barrier m . Of
course, we can also define the total generation rate
g(N)�g1(N)�g2(N), and the total relaxation rate
r(N)�r1(N)�r2(N).

A. Generation and recombination rates

Let Ĥm (m�1,2) be the perturbation Hamiltonian due to
barrier m . While in Bardeen’s approach27 tunneling is dis-
cussed from a many-particle point of view, we use here a
single-particle description, and account for the effect of
electron-electron interaction within a Hartree approximation.
Of course, this means that our model is applicable provided
that exchange and correlation contributions are negligible.
We start by considering tunneling through the first barrier
and calculate the matrix element M 1lw���w�H1�� l� for an
electron transition from a state �� l� in � l to a state ��w� in
�w . Of course, M 1lw depends on the charge density in the
three regions, i.e., on the detailed occupation of the electron
states.
The probability per unit time � (l→��w�) that an electron in

� l jumps into an unoccupied state ��w� in �w is given by
the Fermi ‘‘golden rule’’ �to first order in Ĥ1):28

�� l→��w�)�
2�

� � �M 1lw�2� l f ld� l. �2�

Therefore, the transition rate g1 from � l to �w is obtained
by integrating � (l→��w�) over all unoccupied states in �w ,
i.e.,

g1�� �� l→��w�)�w�1� f w�d�w

�
2�

� � � �M 1lw�2� l�w f l�1� f w�d� ld�w. �3�

Analogously, we can obtain the recombination rate r1: the
probability per unit time � (��w�→l) that an electron in a state
��w� in �w jumps in � l is

�� ��w�→l)�
2�

� � �M 1lw�2� l�1� f l�d� l, �4�

where we have used M 1lw�M 1wl* ; now r1 is easily obtained
by integrating � (��w�→l) over occupied states in �w , i.e.,

r1�� �� ��w�→l)�w f wd�w

�
2�

� � � �M 1lw�2� l�w f w�1� f l�d� ld�w. �5�

We wish to point out that both g1 and r1 are functionals
of f w , which appears explicitly in �3� and �5�, and, through

FIG. 1. A generic resonant-tunneling structure consists of three
isolated regions � l , �w , �r weakly coupled by tunneling barriers,
here indicated with 1 and 2. Coupling between different regions has
to be small enough to be treated with the first-order perturbation
theory.
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the Hartree term, affects the total Hamiltonian of the system,
and hence both the densities of states �w , � l , and the tran-
sition matrix elements M 1lw . Since we are interested in con-
sidering the effects on shot noise of Pauli exclusion and Cou-
lomb repulsion associated to electrons occupying allowed
states in the well, it should also be noticed that the effect of
Pauli exclusion is accounted for in �3� through the term
(1� f w), while Coulomb repulsion affects g1 and r1 through
the term �M 1lw�2, which depends on the charge density in the
device. The passages from �2� to �5� and the above consid-
erations can be repeated for transitions through barrier 2, by
simply substituing pedices 1 with 2, and l with r .

B. Simplifying assumptions

In order to study the effects on shot noise of fluctuations
in the distribution of the occupied states in the well, we have
to make some simplifying, but justified, assumptions. First,
we assume that the occupation factors f l and f r for states in
the external regions do not fluctuate, which means that ther-
malization mechanisms in these regions are highly effective
in establishing an equilibrium distribution. Then, we also
assume that the effect of fluctations of f w on the potential
profile is weak enough that the densities of states in the three
regions can be considered as constant. Therefore, fluctuating
terms in g1 and r1 are f w , of course, and �M 1lw�2, which
depends on f w via the Poisson equation.
In realistic structures, the well region contains many

states, which definitely makes the problem of considering
g1 and r1 as functionals of the occupation factor of each
level in the well not tractable. Hence, we need to make a
further strong assumption: that generation and recombination
rates depend on f w only through the total number of elec-
trons in the well N , defined as

N�� �w f wd�w. �6�

In other words, we assume

gm�gm�N � for m�1,2,
rm�rm�N � for m�1,2. �7�

The total generation and recombination rates are

g�N ��g1�N ��g2�N �, �8�

r�N ��r1�N ��r2�N �. �9�

The eigenvalues of N are positive integers, and cannot be
greater than the total number of states in the well
N0���wd�w . Though it is not necessary nor rigorous, we
will often consider N as a number large enough to be treated
as a continuous quantity, and, for example, will write deriva-
tives of functions of N .
On one hand, it is very reasonable to state that the self-

consistent energy profile, and therefore �M 1lw�2, depend es-
sentially on the total number of electrons in the well, and
only to a second order on the detailed shape of the probabil-
ity density distribution, i.e., on which particular states are
actually occupied. On the other hand, we have to note that
our assumption discards the effect of the detailed shape of
the term f w in both �3� and �5�. We shall consider possible

drawbacks of this last approximation later on, when discuss-
ing the results obtained. It is worth noticing that the expres-
sions for generation and recombination rates used by Davies
et al., i.e., g(N)�(N0�N)/�e , and r(N)�N/�c �Eq. �3.10�
of Ref. 11�, are a particular case of �8� and �9�.

C. Steady-state distribution of electrons in the well

The steady-state distribution p0(N) of electrons in the
well can be obtained by using the conditions that r(0)�0
and N cannot be negative along with the detailed balance on
the rates:11

r�N�1 �p0�N�1 ��g�N �p0�N �, �10�

which, by induction, yields

p0�N ��p0�0 � �
m�1

N g�m�1 �

r�m �
. �11�

One can then obtain p0(0) after imposing probability nor-
malization, i.e.,

�
N�0

N0

p0�N ��1. �12�

D. First-order approximation of generation
and recombination rates

If the distribution of the total number of electrons in the
well is narrow enough we can greatly improve the tractabil-
ity of the problem by linearizing recombination and genera-
tion rates. Let Ñ be the number for which g(Ñ)�r(Ñ) and
let us define �N�N�Ñ . We develop transition rates to the
first order in �N , i.e.,

g�N ��� g�Ñ ���N/�g for �N�g�Ñ ��g

0 for �N�g�Ñ ��g
, �13�

r�N ��� 0 for �N��r�Ñ ��r

r�Ñ ���N/�r for �N��r�Ñ ��r
, �14�

where the characteristic times �g and �r for generation and
recombination are defined as

1
�g

��
dg
dN �

N�Ñ
, �15�

1
�r

�
dr
dN �

N�Ñ
. �16�

In Fig. 2 a qualitative picture of the approximation made is
shown. Now, by substituting �13� and �14� into �11�, we
obtain

p0�N�1 �

p0�N �
�

g�Ñ ���N/�g
r�Ñ ����N�1 �/�r

�
�r
�g

Ñ0�L
L�1 �17�

if we define L��N�g(Ñ)�r and Ñ0�g(Ñ)(�r��g). Since,
according to �13� and �14� �Fig. 2�, the number of electrons
in the well cannot be lower than Ñ�r(Ñ)�r , for which the
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recombination rate is zero, nor greater than Ñ�g(Ñ)�g , for
which the generation rate is zero, then p0(N) is nonzero only
between these limits, and L runs from 0 to Ñ0. From �17� we
obtain for p0(N) the binomial distribution

p0�N ��� Ñ0L � � Ñ0

�g
L�r

Ñ0�L
, �18�

where ��1��g
�1��r

�1 . As can be seen, �18� reduces to Eq.
�3.13� of Ref. 11, if one assumes the transition rates given by
Eq. �3.10� of the same reference, so that, as a consequence,
Ñ0 reduces to N0, and L to N .
We now make the reasonable hypothesis that all the sto-

chastic processes we are considering are ergodic, and indi-
cate with �a� both the expectation value and the time aver-
age of any quantity a . Equation �18� allows us to calculate
the average value of N and the variance:

�N��� Np0�N ��Ñ , �19�

var�N ��� N2p0�N ���N�2�Ñ0
�2

�g�r
��g�� . �20�

It is worth noticing that, according to �20�, the standard de-
viation �var(N)�1/2 is much lower than the allowed range
Ñ0 of variation for N , therefore we can reasonably assume
the linearization of transition rates to be applicable. More-
over, given that �N��Ñ , we have

�r���g��g�Ñ ��g��N��. �21�

It is useful to linearize partial recombination rates through
each barrier, analogously to what we have done in �13� and
�14� for g(N) and r(N). We have to define 1/�rm
�(drm /dN)�N�Ñ and 1/�gm�(�dgm /dN)�N�Ñ , m�1,2.
Therefore we have �gm��gm(Ñ) and �rm��rm(Ñ), for
m�1,2. The steady-state current �i� at the device electrodes
is given by the net transition rate through either barrier

�i��q�g1�r1��q�r2�g2�. �22�

We also define quantities that will be used in the follow-
ing paragraphs:

�1
�1��g1

�1��r1
�1 , �2

�1��g2
�1��r2

�1 . �23�

Of course we have

�g
�1��g2

�1��g1
�1 , �r

�1��r1
�1��r2

�1 , �24�

��1��1
�1��2

�1��g
�1��r

�1. �25�

E. Autocorrelation function

The autocorrelation function cNN(t) of N(t) is defined as

cNN� t ����N�0 ��N� t ��. �26�

By taking the time derivative we have

d
dt cNN� t �� � �N�0 �

d�N� t �
dt � ���N�0 ��g�N ��r�N ���,

�27�
where we have used the rate equation11,35 dN(t)/dt
�g(N)�r(N). From �13�, �14�, �25�, and �26�, we can write
dcNN /dt��cNN /� , from which we finally have

cNN��g��e��t�/�, �28�

where we have used �20� and the fact that cNN(0)
�var(N). Let us point out that � has the role of characteris-
tic time of fluctuations in the number of electrons N .

III. NOISE

A. Time-dependent current

In this section, we are going to calculate the time-
dependent current and its noise spectral density in the case of
a constant voltage applied between the electrodes. According
to the Ramo-Shockley theorem,36 and to the electrokinemat-
ics theorem37 that generalizes it to any system, to the elec-
tromagnetic field, and to quantum mechanics,38 when an
electron tunnels through one of the barriers, it generates a
pulse in the current of the external circuit;39 the time integral
of the current pulse associated to the traversal of barrier m
(m�1,2) is �mq , where �m is equal to the ratio of the volt-
age drop across barrier m to the total applied voltage. Of
course, we have �1��2�1. In terms of the quasi-Fermi lev-
els of the three regions, we have �1�(E f l�E fw)/(E f l
�E fr), and �2�(E fw�E fr)/(E f l�E fr). Suppose that we
observe the system in the interval (0,T), in which the current
i(t) has the form

i� t ���1q��
j
f j
g1� t�t j

g1���
j
f j
r1� t�t j

r1��
��2q��

j
f j
r2� t�t j

r2���
j
f j
g2� t�t j

g2�� , �29�

where f j
g1 gives the shape of the current pulse due to a single

generation via barrier 1 starting at time t j
g1 . Traversals of the

barrier and current pulse shapes are not identical, therefore
we have to associate a different function f j

g1 to each pulse.

FIG. 2. A qualitative sketch of the total generation and recom-
bination rates is shown �thin lines�, along with the linearization
described in Sec. II D. N0 is the total number of states in the well,
Ñ is the number of electrons for which g(Ñ)�r(Ñ), Ñ0 is the
maximum allowed excursion for N in the linearized approximation.
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What all functions f j have in common is the normalization to
unity, and the fact that their Fourier transform F j(�) is flat
and equal to unity for frequencies much smaller than the
inverse of the traversal time of each barrier. At such frequen-
cies the Fourier transform I(�) of the current is40

I����� i� t �exp��i�t �dt

��1q��
j
exp��i�t j

g1���
j
exp��i�t j

r1��
��2q��

j
exp��i�t j

r2���
j
exp��i�t j

g2�� .
�30�

The integral and the sums run over all the pulses occuring in
the interval of observation �0,T). We wish to point out that at
low frequencies �here ‘‘low’’ means again much smaller than
the inverse of the traversal time of the device�, the power
spectral density of current fluctuations S(�) is not influenced
by the pulse shape, therefore we do not expect S(�) to be
dependent on the particular values of �1 and �2 �as shown in
Eq. �B3� of Appendix B�.

B. Noise spectral density

The power spectral density S(�) of the current is defined
as

S����
2
T ��I����2��4��i�2����, �31�

where, again, T is the time of observation. By substituting
�30� in �31� we obtain 16 terms of the type

� �
k

�
j
exp��i�� t j

��tk
���� , �32�

where � ,��g1, g2, r1, r2. We can analyze these terms fol-
lowing Ref. 11: if ��� the diagonal terms j�k are equal to
unity, and their sum gives the number of � hops occurring
from time 0 to T , i.e., on average, ���T .
For ��� , or ��� and j�k , we can define h��(t) as the

probability per unit time that a � hop occurs at time t given
that a � hop occurred at time 0. Therefore we can write �32�
as

� �
k
�
0

T
exp��i�� t�tk

���h��� t�tk
��dt� . �33�

As can be seen, the integral in �33� is independent of time
and is simply the Fourier transform H��(�) of h��(t). The
sum over k in �33� contains, on average, ���T terms, there-
fore �32� becomes

���T�����H������ . �34�

The detailed derivation of all the correlation functions
H� ,�(�) is reported in Appendix A. Substitution of terms
like �34� into S(�) finally yields, for ��1/� �see Eq. �B3�
Appendix B�,

S���

2q2 ��2� �g1�r1�
�2
2 �

�g2�r2�
�1
2 � . �35�

As expected, at frequencies much smaller than the inverse of
the transit time of electrons through the whole device, the
relative sizes of the current pulses corresponding to the tra-
versal of the two barriers are not relevant, therefore the de-
pendence of S(�) on �1 and �2 is canceled out.
We can arbitrarily decompose the net current into a com-

ponent coming from the left and going towards the right
I l , given by the current q�g1� entering the well through
barrier 1 multiplied by the portion �r2�/�r� exiting through
barrier 2, and a component coming from the right Ir , so that
we have

I l�q
�g1��r2�

�r�
, Ir�q

�g2��r1�
�r�

. �36�

Substitution of �36� into �35� yields �see Appendix C�

S���

2q �I l�1�
2�2

�1�2
� 1�

�1�r1�
�2�r2�

� �
�Ir�1�

2�2

�1�2
� 1�

�2�r2�
�1�r1�

� � . �37�

In the next section we shall apply �35� and �37� to derive the
expression of noise at several operating conditions.

IV. NOISE SUPPRESSION
IN DIFFERENT OPERATING CONDITIONS

A. Thermal equilibrium

1. Conductance at equilibrium

We shall show that, at equilibrium, the noise spectral den-
sity S(�) given by �37� yields the well-known
Johnson-Nyquist25 result. This is a good test for our model,
and confirms the fact that shot noise and thermal-equilibrium
noise are special forms of a more general noise
formula,8,34,41–44 i.e., for the system considered in this paper,
Eq. �37�. At equilibrium, the occupation factors in each of
the three regions are given by Fermi-Dirac statistics, and, of
course, zero net average currents flow through each barrier,
i.e., �g1���r1� and �g2���r2�.
It is reasonable to suppose that, if we apply an infinitesi-

mal perturbation from the equilibrium condition, the elec-
trons in the three regions still obey quasiequilibrium distri-
butions, i.e., the occupation factor for each region has the
Fermi-Dirac form, and is associated to a quasi-Fermi level
which tends to that in equilibrium.
Let us calculate the conductance G at equilibrium. We

need to apply a small voltage V between the right and the left
electrode, as sketched in Fig. 3: we have qV�E f l�E fr . Let
us define �1�E f l�E fw and �2�E fw�E fr so that we also
have qV��1��2. The total current is �i��I l�Ir . From
�22� we have

G�
d�i�
dV �

V�0
�
q�r2�
�r�

d�g1�r1�
dV �

V�0

�
q�r1�
�r�

d�r2�g2�
dV �

V�0
.

�38�
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The first derivative can be written in the form

d�g1�r1�
d�1

�
�1�0

d�1
dV �

V�0
�

�g1�
kB�

d�1
dV �

V�0
, �39�

where the equality comes from �B8�, kB is the Boltzmann
constant, and � is the temperature. By using �39� and the
corresponding equation for transitions through the second
barrier, we write �38� as

G�
q

kB��r� � �r2��g1�
d�1
dV V�0��r1��g2�

d�2
dV �

V�0
� .

�40�

If we remember that at equilibrium �r2��g1���r1��g2� , that
�1��2�qV , and the definition �36� of I l , we finally obtain
G as

G�
qIl
kB�

. �41�

2. Thermal noise

In order to recover the Johnson-Nyquist noise, we just
need to obtain a simple relation between �1 and �2 at equi-
librium. From �15�, �16�, and �25�, for the calculation of �1
we have to change the number of electrons in the well region
by a small amount. At equilibrium, as we said above, the
effect of this operation is to shift the quasi-Fermi level in the
well with respect to those in the left and right regions. From
�23� and �39� we have

1
�1

�
d�r1�g1�

d�1
��1�0

N�Ñ

d�1
dN �

N�Ñ

��
�r1�
kB�

d�1
dN �

N�Ñ
. �42�

We know that �1��2�0, because at equilibrium the left and
the right electrodes are at the same potential, therefore by
comparing �42� and the corresponding equation for �2 we
can finally write

�1�r1���2�r2�. �43�

This is an interesting result: in fact, when we put it into �37�
the factors responsible for noise suppression are canceled
out, and we simply obtain

S����2q�I l�Ir��4GkB� , �44�

i.e., the Johnson-Nyquist noise �the second equality comes
from �41� and the fact that I l�Ir at equilibrium�.

B. High bias

When the voltage V applied between the electrodes is
large enough that most of the electrons injected in the device
come from only one of the electrodes, we say the device is in
a condition of high bias. Without loss of generality, we can
assume that a positive voltage is applied to the right elec-
trode, therefore high bias means �g2��0. The left-going cur-
rent component Ir vanishes too, and the total current
�i��I l . From �37� we can obtain the shot-noise factor2 as

��
S���

2q�i�
�1�

2�2

�1�2
� 1�

�1�r1�
�2�r2�

� . �45�

It is worth noticing that, from �25�, we have

2�2

�1�2
�
1
2 , �46�

and the equal sign holds only if �1��2. Equation �46� im-
plies that ��1/2. We also notice that, as expected, recombi-
nation through barrier one, corresponding to injected elec-
trons not contributing to the net current, reduces the shot-
noise suppression. Maximum suppression (��1/2) is
obtained only when �1��2 and �r1� is zero, which means
that V is high enough that � l states in the resonant energy
range of the well are fully occupied or that electrons in the
well occupy states below the left electrode conduction band
edge. We wish to point out that here �1 and �2 take into
account both the Pauli exclusion principle and space charge
effects; therefore, �45� means that the combined effects of
both phenomena cannot push the shot-noise factor below
1/2.
The validity of this conclusion depends on the validity of

the approximations that we have made throughout this paper.
Let us recall the most relevant ones: we have used a first-
order approximation for the generation and recombination
rates as a function of N . Actually, this is not very limiting: in
fact strong suppression requires strong correlation between
electron transitions �incorrelated transitions give full shot
noise�; and the more transitions are correlated, the less the
number of electrons in the well fluctuates around its average
value, attributing validity to our first-order approximation.
The second strong assumption is that generation and re-

combination rates depend on the total number of electrons in
the well, and not on the distribution of occupied levels. This
simplification, as we said above, was necessary to make the

FIG. 3. The longitudinal section of a resonant-tunneling device
is sketched; E f l , E fw , and E fr are the quasi-Fermi levels of � l ,
�w , �r , respectively. A small voltage V is applied between the
electrodes, and �1, �2 are the partial potential energy drops across
barriers 1 and 2, respectively.
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problem tractable while still capturing the physics of the
Coulomb blockade and of the Pauli principle, but, on the
other hand, prevents us from evaluating the possible effects
on noise of the ‘‘shape’’ fluctuations in the distribution of
occupied states in the well. Inclusion of these effects is pos-
sible if one addresses a very idealized situation, for example,
a well with only two allowed levels, where simply two pa-
rameters determine the electron distribution, as Egues et al.12
have done. In that case, a minimum shot-noise factor of ap-
proximately 0.45 is obtained, when the characteristic time
for transitions between the two levels in the well is equal to
the characteristic time for generations from the emitter, and
recombinations towards the collector.
However, characteristic times for energy relaxation and

phase randomization in the well in real devices are much
lower than the characteristic times of escape from the well,
as shown by the poor peak-to-valley ratio of experimental
devices, compared to that predicted by completely coherent
models. Therefore, it is very reasonable that at any moment,
for a given number of electrons in the well, the electron
distribution is practically the equilibrium one, in a sort of
adiabatic approximation. In such a case, our assumption that
g and r depend essentially on N is practically exact: the
more inelastic collisions are efficient in establishing an equi-
librium distribution, the more we can be confident of
gm�gm(N), and rm�rm(N), m�1,2.
On the basis of these considerations, we do not expect the

effects that we have neglected to play a significant role, and
the shot noise factor to drop below one half. Among avail-
able experimental studies, only the one by Brown13 exhibits
a value of � smaller than one half, but the estimated accu-
racy of his results is not reported.

1. One-dimensional structures

Most experimental resonant-tunneling structures can be
treated as one-dimensional devices: the problems are there-
fore simplified and many quantities of interest can be ob-
tained analytically. In a one-dimensional structure, a state in
any region can be decomposed in its longitudinal component
�E�, its transverse component �kT�, and its spin component
���, i.e., for s�l ,w ,r , ��s���Es� � �kT� � ���. Electron tran-
sitions through either barrier conserve spin, longitudinal en-
ergy, and transverse wave vector, therefore the problem of
calculating generation and recombination rates can be solved
just in the longitudinal direction, and the results can be then
integrated over transverse wave vectors and doubled to ac-
count for spin degeneracy �we discard, for simplicity, other
spin effects�. We can use the one-dimensional transition ma-
trix elements derived in Appendix A of Ref. 26. For barrier 1
we have

��El�H1�Ew� �2��M 1lw�El ,Ew��2

��2� l�El��w�Ew�T1�Ew���Ew�El�, �47�

where � l(El) and �w(Ew) are usually called attempt frequen-
cies �because of their resemblance to the classical number of
bounces on the barrier per second� for the states �El� and
�Ew� , respectively, and T1 is the tunneling probability of
barrier 1.

Let us define �s�(Es) (s�l ,w ,r) as the density of longi-
tudinal states in �s , and �T(kT) the density of transverse
states. From �3� and �47�, we have

g1�4��� dE� dkT� l�E ��w�E �T1�E �� l��E ��w� �E �

��T�kT� f l�E ,kT��1� f w�E ,kT�� . �48�

We assume, for simplicity, that no size effects are present
in the left electrode, and that the longitudinal density of
states � l satisfy the condition 2��� l(E)� l�(E)�u(E
�Ecbl), where u is the step function, and Ecbl is the conduc-
tion band edge of the left electrode. We can write

g1�2�w�ER�T1
g� dE u�E�Ecbl��w� � dkT�T f l�1� f w�,

�49�

where ER is an arbitrary resonant energy in the well, and
T1
g is defined as

T1
g�

�dE�wT1u�E�Ecbl��w� �dkT�T f l�1� f w�

�w�ER��dE u�E�Ecbl��w� �dkT�T f l�1� f w�
, �50�

i.e., is practically an average of T1 weighted on suitable
couples of states for transitions from � l to �w . Analo-
gously, for recombination we can write

r1�2�w�ER�T1
r � dEu�E�Ecbl��w� � dkT�T f w�1� f l�,

�51�

where T1
r is defined as

T1
r�

�dE�wT1u�E�Ecbl��w� �dkT�T f w�1� f l�
�w�ER��dEu�E�Ecbl��w� �dkT�T f w�1� f l�

. �52�

It is worth noticing that if �w� has a unique strong resonance
for E�ER , then we have T1

g�T1
r�T1(ER).

Now, we need to define a few quantities of interest,
namely, Nl0, f̃ l , and � l . We have

Nl0�� dEu�E�Ecbl��w� � dkT f l, �53�

f̃ l�
�dEu�E�Ecbl��w� �dkT�T f l f w
�dEu�E�Ecbl��w� �dkT�T f w

, �54�

� l�
�dEu�E�Ecbl��w� �dkT�T f w

�dE�w� �dkT�T f w
. �55�

Nl0 has a simple interpretation as the number of electrons
with longitudinal energies greater than Ecbl that would be in
the well if the occupation factor in the well was equal to that
in the left electrode; f̃ l is the average of f l over occupied
states in the well above the conduction band edge of � l ,
while � l is the ratio of the number of electrons in the well
with longitudinal energies greater than the conduction band
edge of �w to the total number N of electrons in � l �there-
fore 0�� l�1). From �53�–�55�, �49� and �51� can be writ-
ten as
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g1�2�w�ER�T1
g�Nl0� f̃ l� lN �, �56�

r1�2�w�ER�T1
r� lN�1� f̃ l�. �57�

To treat the problem analytically, we assume that f̃ l and
� l are only weakly dependent on the number of electrons in
the well, so that the major dependence of g1 and r1 on N is
the explicit one in Eqs. �56� and �57�, and those through the
tunneling probabilities T1

g and T1
r , which are due to electro-

static repulsion; the characteristic times for generation and
recombination processes �g1 and �r1 are obtained as

1
�g1

���g1�
dlnT1

g

dN �
N�Ñ

�2�w�ER�T1
g f̃ l� l, �58�

1
�r1

��r1�
dlnT1

r

dN �
N�Ñ

�2�w�ER�T1
r� l�1� f̃ l�. �59�

If we discard space charge effects, the first right-hand
terms of both �58� and �59� vanish, so that for �1 we have

1
�1

�
1

�g1
�
1

�r1
�2�w�ER�� l�T1

g f̃ l�T1
r �1� f̃ l�� . �60�

The same passages can be repeated for the second barrier,
once we simply substitute all pedices l with r and 1 with
2. Since we are considering the case of high bias, where
f̃ r�0 and �r�1, we have �r2��2�w(ER)T2

rN and
1/�2�2�wT2

r . By substituting these results, �57�, and �60�
into �45�, we obtain

��1�
2T2

r T1
g� l f̃ l

�T2
r�� l�T1

g f̃ l�T1
r �1� f̃ l���2

. �61�

It is straightforward to see that, because of the term
� lT1

r (1� f l) added to the denominator of �61�, � cannot be
smaller than 1/2 �a closer look at �61� could also prove that
� cannot be smaller than 1� f̃ l/2�.
Equation �61� becomes more readable if we consider par-

ticular cases. First, let us suppose that all available states in
the well are above the conduction band edge of the left elec-
trode so that we have � l�1. This case corresponds to ap-
plied voltages V smaller than the first peak voltage of the
I-V characteristic. If, in addition, �w� has a narrow peak for
E�ER , we also have T1

g�T1
r�T1(ER), and T2

r�T2(ER),
that, after substitution in �61�, yields

��1�
2T1�ER�T2�ER� f̃ l

�T2�ER��T1�ER��2
�1� f̃ l

Tcohe
pk

2 , �62�

where Tcohe
pk is the peak tunneling probability of the double

barrier in the case of completely coherent transport, i.e.,
Tcohe
pk �4T1T2 /(T1�T2)2. However, the presence of Tcohe

pk

does not mean that complete coherence is required for the
applicability of �62�: it is simply required that the longitudi-
nal density of states in the well has a resonance narrow
enough that all quantities involved in the calculation of tran-
sition rates are practically constant in the energy range of the
resonant peak.

Equation �62� shows the way the product f̃ lTcohe
pk affects

the value of �: maximum suppression (��1/2) appears
when both f̃ l and Tcohe

pk are 1, i.e., when there is large charge
accumulation at the emitter �high f̃ l), and symmetric barrier
transmission probabilities (Tcohe

pk �1). The devices character-
ized in Ref. 20 were designed to meet these conditions near
the current peak, where they actually exhibit a noise factor
��1/2.
If the � l states that can be transmitted are completely

filled, we have f̃ l�1, and we recover the well-known
result3–6,8,11,19

��1�
Tcohe
pk

2 . �63�

2. Temperature dependence

Recent experimental measurements of shot noise in
double barrier diodes as a function of temperature20 have
shown a reduced suppression with increasing temperature.
This fact has received little theoretical attention. A simple
explanation of this effect is provided by our model: as tem-
perature increases, inelastic collisions in the well become
more frequent; in other words, the effective mean-free path
gets shorter, resulting in a lower and wider resonant peak in
the density of states and a lower peak-to-valley ratio in the
I-V characteristics.
We now have to remove the hypothesis of narrow density

of states �w� , while keeping � l�1. Let us suppose the con-
dition of high accumulation at the emitter, in other words, let
f̃ l�1. From �61� we obtain

��1�
2T2

r T1
g

�T2
r�T1

g�2
. �64�

In order to better explain the meaning of �64�, let us con-
sider the following situation: a constant voltage is applied
between the electrodes, and the temperature is progressively
raised. Suppose that the barrier dimensions are such that
T1(ER)�T2(ER) �this is the case, for example, of the de-
vices fabricated and studied by Ciambrone et al.20�. For very
low temperatures the hypothesis of narrow density of states
is valid, because inelastic collisions are rare, therefore Eq.
�63� is applicable, and a suppression factor of one half is
expected. When the temperature increases, the peak of �w�
widens, and T1

g and T2
r start to differ from T1(ER)

�T2(ER). In particular, we would have T1
g�T1(ER)

�T2(ER)�T2
r , because collisions with phonons make elec-

trons in the well relax to lower energy states, so that genera-
tion occurs more easily at higher energies �because higher
energy states in the well are depopulated�, while recombina-
tion occurs at lower energies �because electrons occupy
lower energy states�. It is straightforward to see from �64�
that � depends only on the ratio T2

r /T1
g , and is minimum

when that ratio is unity. As temperature increases, this ratio
decreases, and � approaches unity.
This interpretation is supported by the experimental re-

sults shown in Ref. 20, where, at temperatures up to 155 K,
shot-noise suppression is smoothly dependent on tempera-
ture, while it rapidly vanishes at higher temperatures.
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We would like to emphasize that, if T1(ER)�T2(ER), it
is possible to observe reduced shot noise with increasing
temperature: as a matter of fact, since T1

g�T1(ER) and
T2(ER)�T2

r , at some temperature we could have T1
g�T2

r ,
and have a value of � close to one half. Let us point out that
the possibility of both a positive and negative dependence of
shot noise on temperature is one of the relevant prediction of
our approach.
We also want to stress the point that shot noise cannot be

used as a probe for measuring the coherence of transport in
resonant-tunneling diodes. In fact, in the so-called ‘‘sequen-
tial regime’’26,33 all electrons entering the well are inelasti-
cally scattered, but the density of states in the well is still
narrow enough that the shot-noise factor � is not affected by
the collision rates and is simply given by �62�, as in the case
of completely coherent transport.

3. Second resonance

A very small noise reduction is to be expected after the
first current peak: electrons in the well relax towards the
resonant peak of �w� , and therefore fall below the conduction
band edge of � l , leaving higher states in the well mostly
empty, so that Pauli exclusion is poorly effective in prevent-
ing generation from barrier 1. Many states in the well now
have longitudinal energies smaller then Ecbl , so that we have
� l appreciably smaller than unity. Let us also consider the
case of high accumulation, i.e., f̃ l�1: �61� becomes

��1�
2T2

r T1
g� l

�T2
r�T1

g� l�
2 . �65�

What happens now is that maximum suppression can only
be obtained if T2

r�T1
g� l . If energy relaxation cannot be dis-

regarded, most electrons in the well relax towards the first
resonant peak of �w� , and therefore fall below the conduction
band edge of � l , leaving higher states in the well empty,
which means � l�0. In this case, unless barrier transmission
probabilities differ by many orders of magnitude, no noise
suppression should be obtained. In other words, Pauli exclu-
sion is no more effective in preventing generation from bar-
rier 1. This is the case, for example, of the diodes studied by
Ciambrone et al.20
As we have said in the Introduction, noise characteriza-

tion can provide information about transport in such devices
complementary to that given by dc and ac characteristics.
For example, if the density of states in the well �w� has a
second-resonant level, shot-noise measurements can provide
useful insights into the coherence of transport. In fact, in the
case of completely coherent transport, electrons do not relax
to the lower resonant peak of �w� and � l is close to one,
leading to a one half shot-noise factor, if the barriers have an
equal transmission probability at the second-resonant energy.
Otherwise, even a small rate of incoherent processes is suf-
ficient to relax electrons to lower levels, depopulating the
second-resonant level and leading to an � l much smaller
than 1 and to a shot-noise factor close to 1.
Moreover, looking at the dependence of shot noise on

temperature, we could also determine whether Pauli exclu-
sion or Coulomb repulsion is the dominant cause of correla-
tion between different pulses: in fact, while the effectiveness

of Pauli exclusion is strongly dependent on the collision rate
in the well �i.e., on temperature�, that of Coulomb interaction
�not accounted for in �61�� depends mainly on the total
charge accumulated in the well.

C. Short time of observation and noise at higher frequencies

Suppose that the time of observation T is much smaller
than the characteristic times for generation and recombina-
tion through either barriers, i.e., ��T . In this situation, con-
secutive subpulses corresponding to a single electron travers-
ing the device are separated by a time longer than T and do
not appear to be correlated. This is easily the case, for ex-
ample, if the well region has macroscopic dimensions, i.e.,
several electron diffusion lengths; in such a case, noise cor-
responding to two single barrier diodes in series is expected.
In the previous sections we have dealt with the case

���1, which is not applicable now. Rather, we are in the
opposite limit of ���1, where h��(t)����, (� ,��r1 ,
r2 , g1 , g2), and H��(�)�2��(�)���, as is readily ob-
tained from �A6�–�A10�. By substituting such a form of
H�� in �B1� and then in �31�, we have

S���

2q2 ��1
2�g1�r1���2

2�g2�r2� . �66�

The full shot noise for the single barrier m (m�1,2) in the
case of uncorrelated pulses is given by Sm(�)
�2q(q�gm��q�rm�), therefore �66� can be written as

S�����1
2S1�����2

2S2���. �67�

Let us recall that �m is the ratio of the voltage drop across
barrier m to the voltage drop across the whole device �i.e., if
we refer to Fig. 3, �m��m /qV). Near equilibrium, if Rm is
the differential resistance of barrier m , and R�R1�R2 is the
total device resistance, we have �m�Rm /R and
Sm�4kB�/Rm �as can be obtained from �B8��, which, sub-
stituted in �67�, yields the Johnson-Nyquist result for S(�),
as expected.
If the bias is high enough that transport occurs in only one

direction, i.e., for example, �r1���g2��0, we have
S1�S2�2q�i�, with �i��q�g1��q�r2� and

��
S���

2q�i�
��1

2��2
2�

1
2 , �68�

where the equal sign holds if �1��2�1/2, i.e., again, if the
structure is symmetric.
In order to write the dependence of S(�) on frequency,

let us indicate the noise spectral density at low frequencies
(���1) given by �35� with SLF and that at high frequencies
(���1) given by �66� with SHF . It is straightforward to see
that if we put the complete expressions �A7�–�A10� into
�B1�, we obtain the term (1��2�2) at the denominator.
Therefore, the expression of S(�) contains a pole in 1/� and
a zero, and can be written as

S����SLF
1��2�z

2

1��2�2
, �69�

where �z is obtained as
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�z
2�

SHF
SLF

�2. �70�

Equation �69� is applicable for frequencies much smaller
than the inverse of the tunneling time of either barriers.

V. SUMMARY

We have shown that our approach has a definite advan-
tage over those existing in the literature, because it can be
applied in the whole range of transport regimes. We have
seen that the results of Refs. 4–6, 8, 11, 19, which are valid
in the case of completely coherent transport, are recovered,
as well as those of Davies et al.,11 which have been obtained
on the basis of a semiclassical model, i.e., for a high rate of
incoherent processes in the well. Our model has enabled us
to explain how similar results could be obtained from quite
different models, and even if the correlation between con-
secutive subpulses was discarded. Moreover, we have in-
cluded in our model the combined effects of Pauli exclusion
and of Coulomb repulsion on the suppression of shot noise,
and concluded that in practical devices a suppression in ex-
cess of one half is not to be expected.
We have also studied shot noise in different operating

conditions. At equilibrium we have recovered the Johnson-
Nyquist noise, which is not a new result, but a good test for
the validity of our model. At subpeak voltages we have pre-
dicted smaller suppression of shot noise, due to the empty
states at the cathode. At voltages higher than that for the first
peak, except for particular cases implying strongly asymmet-
ric barriers, we recover full shot noise, because time corre-
lations between transitions into and from the well region are
reduced due to electron thermalization. In particular, for
second-resonance biases, we have shown that the Pauli ex-
clusion plays no role in reducing shot noise, if collisions are
effective in establishing a thermal-equilibrium energy distri-
bution; in that case, the study of noise suppression in that
case helps us to determine the role played by Coulomb re-
pulsion.
The dependence of shot-noise suppression on temperature

has been observed in experiments, and has been addressed
theoretically in this paper. We have shown that our model
simply explains the experimental results. Finally, we have
shown the dependence of shot noise on frequency, up to the
inverse of the tunneling time of each barrier.
In the future, numerical simulations of realistic resonant-

tunneling structures based on our model will be performed,
in order to relax some of the approximations required to treat
the problem analytically and to make a comparison with ex-
perimental results. In addition, we plan to perform experi-
ments based on some predictions of our model: in particular,
double barrier diodes with barriers of equal transparency at
the second-resonance voltage peak, and strongly asymmetric
diodes which could exhibit enhanced shot-noise suppression
with increasing temperature.
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APPENDIX A: CORRELATION FUNCTIONS

In this appendix we shall derive the correlation functions
h��(t) needed in Sec. III, following Davies et al.11 Let us
start by calculating the correlation function hrlrm(t),
(l ,m�1,2). We need to define the conditional probability
p(N ,t�M ,0) that N electrons are in the well at time t , given
that there were M electrons at time 0. From it, we can write
the conditional probability per unit time rl(t�M ,0) that an
rl transition occurs at time t , given that M electrons were in
the well at time 0, in the form

rl� t�M ,0�� �
N�0

N0

rl�N �p�N ,t�M ,0�, �A1�

where N0 is the total number of states in the well.
We already introduced the probability p0(M ) of having

M electrons in the well, therefore we can write

�rm�� �
M�0

N0

rm�M �p0�M �, �A2�

from which we obtain prm(M ), i.e., the probability that,
when an rm hop occurs, M electrons are left in the well, as

prm�M ��
p0�M�1 �rm�M�1 �

�rm�
. �A3�

The probability per unit time that an rl hop occurs at time
t , given that an rm hop occurred at time 0, i.e., hrlrm(t), is
then given by

hrlrm� t �� �
M�0

N0

prm�M �rl� t�M ,0�. �A4�

From �14� we can write �A1� as

rl� t�M ,0�� �
N�0

N0 � �rl��
�N
�rl

� p�N ,t�M ,0�

��rl��
M��N�

�rl
e��t�/�, �A5�

where the second equality comes from the fact that
p(N ,t�M ,0) is normalized to unity and that the number of
electrons in the well relax exponentially with time constant
� to the mean value �N�,11 as we know from the rate equa-
tion dN/dt�g(N)�r(N).
From �14�, �A2�–�A5�, we now write

hrlrm� t ��
1

�rm� �
M�0

N0

p0�M�1 �� �rm��
M�1��N�

�rm
�

�� �rl��
M��N�

�rl
e��t�/��

��rl��
1
�rl

� 1�
var�N �

�rm�rm� � e��t�/�; �A6�

sums are easily evaluated if we notice that
�N�0
N0 p0(N)�N�0 and �N�0

N0 p0(N)(�N)2�var(N). The
Fourier transform Hrlrm(�) of �A6� is
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Hrlrm����2������rl��
2�

�rl
� 1�

var�N �

�rm�rm� � 1
1��2�2

.

�A7�

Analogously, we can obtain the correlation functions for
all the other processes, i.e., for l ,m�1,2:

Hglgm����2������gl��
2�

�gl
� 1�

var�N �

�gm�gm� � 1
1��2�2

,

�A8�

Hrlgm����2������rl��
2�

�rl
� 1�

var�N �

�gm�gm� � 1
1��2�2

,

�A9�

Hglrm����2������gl��
2�

�gl
� 1�

var�N �

�rm�rm� � 1
1��2�2

.

�A10�

APPENDIX B: USEFUL FORMULAS

1. Calculation of S„�…
From �30�, by using �34� and considering the fact that

���H������H�� (� ,��g1 ,g2 ,r1 ,r2), we have

��I����2�
q2T ��1

2��g1��1�Hg1 ,g1����

�2�g1�Hr1 ,g1�����r1��1�Hr1 ,r1�����

�2�1�2���g1�Hg2 ,g1���

��g1�Hr2 ,g1�����r1�Hg2 ,r1���

��r1�Hr2 ,r1������2
2��g2��1�Hg2 ,g2����

�2�g2�Hr2 ,g2�����r2��1�Hr2 ,r2�����.

�B1�

Substitution of �A7�–�A10� in �B1� and then in �31�
yields, for ���0,

S���

2q2 ��1
2� �g1�r1�� 1�

2�

�1
� �

2�

�1
2 var�N ��

�2�1�2� �

�1
�g2�r2��

�

�2
�g1�r1��var�N �

2�

�1�2
�

��2
2� �g2�r2�� 1�

2�

�2
� �

2�

�2
var�N �� , �B2�

but, if we put �20� in �B2�, by writing �g� as
�g1�r1�g2�r2�/2, we obtain

S���

2q2 ���1
2�2�1�2��2

2�� �2�g1�r1�
�2
2 �

�2�g2�r2�
�1
2 � ,

�B3�

which reduces to �35� if we simply remember that
�1��2�1. Note that, as expected, the dependence of noise
at low frequencies upon the relative sizes of current pulses
due to traversal of the two barriers is canceled out.
Now, from �36� and the fact that r�r1�r2, we can write

q�g1�r1��� 2�r1�
�r2�

�1 � I l�Ir ,

q�g2�r2��� 2�r2�
�r1�

�1 � Ir�I l . �B4�

By substituting �B4� and �25� in �35�, we straightfor-
wardly get Eq. �37�.

2. Derivation of Eq. „39…
Each state ��s� (s�l ,w ,r) is characterized by its total

energy Es
T and a set of other parameters �s . Electron transi-

tions between regions conserve energy, hence we can write
�M 1lw�2��M 1(Ew

T ,�w ,� l)�2�(Ew�El). From �3� and �5�
we can write

g1�r1�
2�

� � � � �M 1�ET,�w ,� l��2� l�ET,� l��w�ET,�w�

�� f l�ET,� l�� f w�ET,�w��d�wd� ldET. �B5�

Differentiation of �B5� with respect to �1�E f l�E fw , given
that at equilibrium f l� f w , yields

d�g1�r1�
d�1

�
�1�0

�
2�

� � � � �M 1�ET,�w ,� l��2� l�ET,� l�

��w�ET,�w�
d f w
dE fw

�
�1�0

d�wd� ldET,

�B6�

in which, according to the Fermi-Dirac statistics which holds
at thermal equilibrium, we have

d f w
dE fw

�
�1�0

�
f w0�1� f w0�

kB�
, �B7�

where kB , � , and f w0 are the Boltzmann constant, the tem-
perature, and Fermi-Dirac occupation factor, respectively.
Substitution of �B7� in �B6� finally yields

d�g1�r1�
d�1

�
�1�0

�
g1
kB�

. �B8�
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