
Università di Pisa 
     

 

 

!"#$%&'%(#!"#)*++*,,&+-(#!"#$%&"'%()$%*+%,-./01(-"2%"&%212",310$%,$.-3"2#/3("'%#$4-3$,5%-230/#-26%#'-&(7
#-&&/,-"2% 12#% 8100-,(-3% ('12,9"'(% -2% :+%12#%;+% ,/8812#,5% 12#% *+% (/22$0-26(# .&/'+*0# &1# 2&34/5*5%&+*0#
60-,5'&+%,7(#!(#44"89:88#;<==>?"#
#

!"#$%&"'%()$%*+%,-./01(-"2%"&%
212",310$%,$.-3"2#/3("'%#$4-3$,5%
-230/#-26%#'-&(7#-&&/,-"2%12#%8100-,(-3%
('12,9"'(%-2%:+%12#%;+%,/8812#,5%
12#%*+%(/22$0-26 "

 

#$%&'()%"*$+,$"
@%4*'5%3-+5&#A%#)+B-B+-'%*#A-00C)+1&'3*D%&+-E#60-55'&+%,*(#)+1&'3*5%,*(#F-0-,&3/+%,*D%&+%(#

G+%H-'7%5I#A%#J%7*#

#$(-.//."0%&&%))+&."
@%4*'5%3-+5&#A%#)+B-B+-'%*#A-00C)+1&'3*D%&+-E#60-55'&+%,*(#)+1&'3*5%,*(#F-0-,&3/+%,*D%&+%(#

G+%H-'7%5I#A%#J%7*#
 

 



Journal of Computational Electronics 4: 63–66, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Code for the 3D Simulation of Nanoscale Semiconductor Devices, Including
Drift-Diffusion and Ballistic Transport in 1D and 2D Subbands,

and 3D Tunneling

G. FIORI AND G. IANNACCONE
Dipartimento di Ingegneria dell’Informazione: Elettronica, Informatica, Telecomunicazioni, Università degli studi
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Abstract. We present a three-dimensional device simulator, suitable for the study of a wide range of nanoscale
devices, in which quantum confinement and carrier transport are taken into account. In particular, depending
on the confinement, the 1D, 2D or 3D Schrödinger equation with density functional theory in the local density
approximation is coupled with the Poisson equation in the three-dimensional domain. Continuity equation in the
ballistic and in the drift-diffusion regime are also solved assuming separation of the subbands.
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1. Introduction

Device modeling tools capable of addressing different
degrees of quantum confinement and different trans-
port regimes are required to study both MOSFETs
at the end of the ITRS [1] Roadmap and device
structures with alternative architectures. Commercial
TCAD tools, in which current continuity and energy
balance equations are implemented with quantum cor-
rections, have provided useful insights of the present
scaling approach, but for a complete understanding
of the present and future device generations, a more
accurate quantum approach is required. Indeed, even
in MOSFETs of the latest technology node, quantum
confinement of the electrons in the channel is sig-
nificant, and energy levels split in well-separated 2D
subbands [2,3]. Quantum models are then necessary
to extract all the relevant electrical quantities also far
from equilibrium, considering important phenomena
that can occur at such dimensions like ballistic or quasi-
ballistic transport [4]. In addition, while conventional
planar MOSFETs are nowadays the most common de-
vices, in the medium-long term they are going to be
substituted by more promising architectures that of-
fer better scalability perspectives for 10 nm channel

lengths and beyond, such as multiple-gate SOI tran-
sistors [5,6]. In such devices, transport occurs through
one-dimensional subbands [7], since carriers are con-
fined in the two-dimensional plane perpendicular to
the current direction and quantum tunneling may be
significant [8]. A versatile device simulator must also
be capable of considering at the same time different
kinds of confinements as is the case in nanocrystal
memories [9] or in Single Electron Transistors [10].
In this work, we present the ViDES (Versatile DE-
vice Simulator) code, based on the self-consistent so-
lution in 3D of the (i) many particle Schrödinger equa-
tion based on density functional theory in the effec-
tive mass approximation, (ii) nonlinear Poisson equa-
tion, and (iii) continuity equation for electrons, in
the cases of both drift-diffusion and ballistic transport
regimes. In addition, regions with different degrees of
quantum confinement may be considered, and trans-
port in such regions is consequently computed. If in
a given region charge carriers are quantum confined
in two directions (1D confinement), transport (ballistic
or drift-diffusive) is computed in 1D subbands. Anal-
ogously, if charge carriers are confined in one direc-
tion (2D confinement), transport is computed in 2D
subbands.
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2. Code Architecture and Models

The core of the device simulator is represented by the
three-dimensional Poisson solver, which is discretized
over a rectangular grid and it is based on the Newton-
Raphson algorithm with the predictor/corrector scheme
proposed in [11].

Independent modules, in which quantum models
with different degrees of confinement are implemented,
provide the electron concentration n and its deriva-
tive with respect to the electrostatic potential φ to the
Poisson solver, which, in turns, gives back in a self-
consistent iteration scheme φ needed to compute n it-
self (Fig. 1).

In all the modules the Schrödinger equation is solved
in strongly confined regions in the effective mass
approximation with the Density Functional Theory,
Local Density Approximation, while a semiclas-
sical approximation (using either the Fermi-Dirac
or Maxwell-Boltzmann distributions) is assumed
elsewhere.

In addition, ellipsoidal parabolic energy bands are
taken into account, hence the Schrödinger equation is
solved for each effective mass along the k-space direc-
tions.

In this way, as pointed out in the previous section,
different kinds of confinement can be considered at
the same time in different regions of the same device.
In particular, if quantum confinement is predominant
along one direction, the one-dimensional Schrödiger
equation is solved in the direction of strong con-
finement and a semiclassical expression for in-plane
states is assumed [12], while, if the confinement is
predominant in two-dimensions, the two-dimensional
Schrödinger equation is solved in the plane of con-
finement, and continuous states are considered in the
direction of propagation [13].

Figure 1. Sketch of the code architecture.

A different approach has been followed in the mod-
ule that compute the 3D confined quantum electron
density. In particular, we have fixed the number of elec-
trons in the confined region, so that the electron density
can be expressed as

n3D = 2
m∑

i=1

|ψi |2 + (N − 2m)|ψm+1|2 , (1)

where ψi is the orbital associated to the i-th eigenvalue,
N is the total number of electrons in the dot, and m =
" N

2 # is the number of fully occupied single electron
levels.

This choice has been dictated by the need to
determine the electrochemical potential of a three-
dimensional confined region, that can be easily com-
puted by means of the Slater formula [14]. Indeed, the
electrochemical potential µ(N ), defined as the energy
necessary to add the N -th electron to the dot, can be
expressed as

µ(N ) = E(N ) − E(N − 1) = ε

(
N − 1

2

)
, (2)

where E is the total energy of the dot, while ε is the
energy of the half-occupied highest Kohn-Sham orbital
of a system with N− 1

2 electrons. Due to its modularized
structure, the code is a very versatile tool since allows
the developer to easily include different models in the
program framework. This is valid not only for models
at the quasi-equilibrium as those discussed above, but
also for models far from the equilibrium. Indeed, our
code also includes modules in which transport through
well separated subbands is computed. In particular, the
continuity equation in both the ballistic and in the drift-
diffusion approximation is solved in 1D subbands, as
well as ballistic transport in 2D subbands.

When transport between two regions occurs via tun-
neling, the two regions are typically considered elec-
trically insulated, so that the continuity equation is not
solved in the self-consistent scheme. Then, once the
potential and charge profiles are obtained, as a post
processing procedure tunneling currents are computed
using a routine for the computation of scattering ma-
trices in three-dimensional domains.

3. Simulations

In this section we present a wide range of examples,
showing that our code can be used to address a broad
variety of nanoscale devices.
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3.1. Single Electron Transistor

First, we present an example of the simulation of a sin-
gle electron transistor defined by split gates on an Al-
GaAs/GaAs heterostructure. In Fig. 2(a) the gate layout
of the considered device is depicted, while in Fig. 2(b)
the equivalent capacitance circuit is shown. Two differ-
ent types of confinement have been taken into account
in the same domain: three-dimensional in the central
region corresponding to the dot, and one-dimensional
in the two-dimensional electron gas (2DEG). The elec-
trochemical potential, computed with Slater’s rule, is
shown in Fig. 3 as a function of the gate voltage applied
to gates 2 and 5, and it can be used to extract the capac-
itances of the equivalent circuit. The drain-to-source
conductance as a function of the gate voltage can be
easily obtained from the computation of the conduc-
tance of each quantum constriction in correspondence
of the gate voltage for which the electrochemical po-
tential aligns with the Fermi level.

Figure 2. (a) Split gate layout and considered quantum confine-
ment; (b) Equivalent capacitance circuit.

Figure 3. Computed electrochemical potential as a function of the
voltage applied to gates 2 and 5.

Figure 4. Structure of the considered SNWT.

3.2. Silicon Nanowire Transistor

As a second example, we present the simulation of a
silicon nanowire transistor (SNWT), whose structure
is shown in Fig. 4, with channel length L = 7 nm
and channel cross-section of 5 × 5 nm2. Here, quan-
tum confinement occurs in the x and z directions while
transport in one-dimensional subbands in the y direc-
tion. For such geometries, 1D subbands are well sepa-
rated, so transport can be studied independently in each
subband. We have considered a fully ballistic transport
in the channel, both in the semiclassical and in the
quantum case (i.e. considering barrier tunneling), and,
in addition, we have solved the drift/diffusion equa-
tion in each 1D subband taking into account velocity
saturation: in this way we have been able to define
an upper (fully ballistic transport) and a lower limit
(drift/diffusion transport) for the device performance,
as well as to study the influence of quantum transport
on device characteristics. In Fig. 5 we plot the transfer

Figure 5. Transfer characteristics of the SNWT device with channel
length equal to 7 nm in the linear and in the logarithmic scale.
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Figure 6. Transfer characteristic computed in the ballistic approx-
imation for a 25 nm Well-Tempered MOSFET.

Figure 7. Threshold voltage shift dispersion computed over a sam-
ple of 100 devices. VTnom is the threshold voltage computed in case
of uniform doping profile.

characteristics obtained by assuming Drift-diffusion
transport in the 1D subbands, and ballistic trans-
port, both including or not including source-to-drain
tunneling.

3.3. Well-Tempered MOSFETs

As a last example, we show results for a Well-Tempered
MOSFET with 25 nm channel length [15]. Confine-
ment is predominant along the direction perpendicular
to the Si/SiO2 interface, and splitting of the energy
level in two-dimensional subbands occurs. Ballistic
transport has been computed over the well-separated
subbands and transfer characteristic are shown in
Fig. 6.

For such devices, other effects such as the random
distribution of dopants in the depletion region plays an
important role. Simulating a large number of devices
with the same nominal doping profile, but with a dif-

ferent actual one, we have also computed the standard
deviation of the threshold voltage extracted from the
transfer characteristics computed in the drift-diffusion
approximation, as shown in Fig. 7.

4. Conclusions

In conclusion, we have presented a three-dimensional
Poisson/Schrödinger solver which results to be a very
versatile tool for the investigation of the electrical prop-
erties of a broad range of nanoscale semiconductor de-
vices, both at the quasi-equilibrium and far from the
equilibrium. We have shown that our code is able to
consider different kinds of confinement as well as dif-
ferent transport mechanism, that allow us to extract all
the relevant electrical quantities.
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Excellence SINANO, and from the Fondazione Cassa
di Risparmio di Pisa.
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