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Abstract— We present a full band investigation of electron-
phonon interaction in Graphene NanoRibbons (GNRs) by ex-
ploiting a tight-binding description within the deformation
potential approximation. We show that a full band approach
is required to obtain accurate results: mobility as high as 800
cm2/Vs at room temperature can be achieved for 1 nm-wide
ribbons, more than one order of magnitude higher than that
obtainable in silicon nanowires, but still not enough to ensure
ballistic transport in GNR-based devices.

I. INTRODUCTION

Graphene NanoRibbons (GNRs) continue to attract much
attention, since lateral confinement represents one of the few
available options to induce a reasonable gap in graphene, even
if lithographic precision at the level of single atom is required.
To assess their perspective for use in nanoelectronics, it is
also essential to evaluate their intrinsic mobility, especially as
new promising methods able to prepare defect-free samples
are developed [1]. This issue is still open, and represents the
main motivation for our work.

Here, we provide a detailed investigation of the intrinsic
electron-phonon interaction by means of a full band (FB)
analysis, based on a tight-binding (TB) description of the
electronic structure and phonon dispersion curves [2]. Build-
ing upon significant advancements with respect to previous
models appeared in the literature [3], [4], [5], here we have
included the effect of both the in-plane acoustic (AC) and
optical (OP) modes L and T, intersubband scattering, the
transverse momentum conservation uncertainty, and the two-
component nature (spinor) of the nanoribbon wavefunction.

II. METHODOLOGY

The energy dispersion of armchair GNRs has been ob-
tained through a tight-binding pz-Hamiltonian accounting
for energy relaxation at the edges [2]. Graphene phonon
spectrum has been derived by means of the force-constant
dynamic-matrix approach, including contributions up to the
fourth nearest neighbor interactions and exploiting parameters
extracted from first-principles calculations [6]. For a GNR
with l dimer lines in the transverse direction y, each of the
6 phonon branches of graphene, labelled by the quantum
number j (j = 1 − 3 for AC and j = 4 − 6 for OP
branches, respectively) is splitted into l sub-branches in the
nanoribbons, each corresponding to a different transverse
wavevector qyβ (qyβ = (2πβ)/[(l+1)a] for β = 0, ..., l/2−1
and qyβ = [2π(β + 2)]/[(l + 1)a] for β = l/2, ..., l − 1).

Scattering rates have been computed by means of the Fermi
Golden Rule, within the deformation potential approximation
(DPA) and exploiting a collisional broadening approach for
small AC phonon energies. The momentum relaxation rate for

an electron in the initial state k = (kx, kyη), with η = 1, ..., l,
is obtained by considering all transitions involving phonons
of the 6l sub-branches (j,β) for all final electron states k′ =
(kx, kyη′) [7]:
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where kyη = (2πη)/[(l + 1)a] is the transverse electron
momentum, DAC and DOP = (2π)/aDAC are the AC
and OP deformation potentials, respectively, whereas n+

q =
n−
q +1, n−

q is the Bose-Einstein occupation factor, ρ = 7.6×
10−8 g/cm−2 is the mass density of graphene, W is the GNR
width, kF = π/(

√
3 a), a =

√
3 aCC (aCC = 0.144 nm) and

θkk′ is due to the spinor nature of the GNR wavefunction [7].
δj,AC (δj,OP ) is the Kronecker delta: δj,AC = 1 (δj,OP = 1)
if j = 1, ..., 3 (j = 4, ..., 6), 0 otherwise. For narrow ribbons,
backscattering limits the angle α between k and k′ to α = π.

In Eq. (1), Gη,η′,β is the form factor due to the transverse
momentum conservation uncertainty:

Gη,η′,β =
2

[
4π3β η η′

]2 [
1 − (−1)η+η′+β

]

[
(πβ)4 − 2π4β2 (η2 + η′2) + π4 (η2 − η′2)2

]2 , (2)

peculiar of 1D systems [8]. The low-field mobility has
been finally calculated adopting the Kubo-Greenwood formal-
ism [9]:
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where 1/τ(k) is the inverse lifetime of an electron with initial
momentum k and energy Ek (Eq. (1)), whereas n2D is the
quasi-1D electron concentration due to the finite width of
the nanoribbon, T is the temperature and Dη(kx, kyη) =
1/π [dkx/dEη(kx, kyη)] is the 1D density of states (DOS)
for the η-th electron subband.

III. RESULTS AND DISCUSSIONS

The GNR phonon sub-branches (both AC and OP) are
sketched in Fig. 1 for different widths W , ranging from 1
to 10 nm, obtained from the zone folding of the six branches
of graphene phonon dispersion: longitudinal (L), transversal
(T) and flexural modes (Z).
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Fig. 1. Phonon dispersion curves for two different GNR widths: W = 1.12
nm (a) and W = 4.86 nm (b). In (a) different colors correspond to different
types of in-plane and out-of-plane vibrations. In (b) black (red) curves refer
to AC (OP) sub-branches.

Fig. 2. Intrasubband scattering rates obtained by means of the FB approach
(Eq. (1)) for the lowest conduction subband for W = 1.12 nm. Intrasubband
AC intravalley and OP scattering rates obtained as in Ref. [3] are also shown
(black dashed lines).

Figs. 2a-d show a comparison between the scattering rates
obtained by means of our FB approach and of the analytical
approach proposed in Ref. [3] for W = 1.12 nm. Only the
LA and LO modes are taken into account, and for a fair
comparison the very same phonon parameters as in Ref [3] are
assumed. As can be seen, results in [3] largely underestimate
the scattering rate: this clearly calls for the adoption of the
FB approach.

The general assumption made in literature for AC modes
is that only LA phonons limit mobility [3] [4]. However,
very recently DFT calculations [12] and models based on
group theory [13] have demonstrated that TA mode plays
an important role. As a consequence, we have directed our
efforts towards the determination of an effective deformation
potential DAC within the DPA approximation taking into
account LA as well TA modes. Such choice has been driven
by the fact that a large range of DAC values are available
in the literature for graphene, ranging from 4.75 eV [14]
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Fig. 3. Optical energy offset as a function of W for the TO (blu triangles)
and LO (red squares) modes. Dashed lines correspond to the fitting.

to 29 eV [15]. In the extreme uncertainty concerned with
the actual intrinsic graphene mobility in experiments, density
functional theory (DFT) represents the method of choice
to quantitatively evaluate the right DAC parameter. To this
purpose, in the following, we use DAC = 4.5 eV [12],
computed by means of DFT simulations and consistent with
those calculated within the Su-Schrieffer-Heeger (SSH) model
(DAC ≈ 7.4 eV) [16] and by fitting to experimental data
(DAC ≈ 4.75 eV) [14]. In this work, we neglect flexural
modes which are negligible for temperature higher than
130 K, according to [10] and [11].

In Fig. 3 the computed OP energy offset is shown as a func-
tion of W for the LO and TO modes, where ELO, ETO ∝
1/Wα, with α ≈ 0.02. Our calculated ELO agrees with those
generally used in literature [3], [4] (152-160 meV).

The general assumption made when studying mobility
in GNRs is that forward scattering (α = 0) is arbitrarily
neglected. Here we want to verify such assumption. In partic-
ular, phonon-limited mobility for W = 4.86 nm and 10.10 nm
as a function of the carrier density n2D by including only
backscattering and backward+forward scattering is shown
in Figs. 4a-b. As can be seen, forward scattering can be
reasonably neglected for width up to W = 10 nm.

The total mobility and the AC and OP phonon-limited
mobility (µ, µAC and µOP , respectively) are shown in Fig. 5
as a function of n2D. For the narrower GNRs, µ is close to
800 cm2/Vs (Fig. 5a) and is mainly limited by AC phonons
(Fig. 5b). For narrow ribbons the larger n2D, the larger µ,
because of the larger intrasubband scattering time τ . Instead,
for wider GNRs, intersubband scattering is activated in the
inversion regime, due to the increased density of states avail-
able for scattering, reducing µ. For n2D > 1012 cm−2, the
degeneracy factor [1−f(Ek′)]/[1−f(Ek)], often neglected in
literature, has to be considered. µAC and the mobility limited
by TA (µTA) and LA (µLA) phonons are shown in Fig. 6,
as a function of n2D for different W : µTA < µLA, for any
n2D.

In Fig. 7a-b, µ is plotted as a function of W for dif-
ferent n2D and T , respectively. As also observed in small-
diameter CNTs [16], the dependence on W and T in narrow

32.2.2IEDM10-729



1×1011

1×1012

1×1013

1×1014

-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5
1×1011

1×1012

1×1013

1×1010
1×1011
1×1012
1×1013
1×1014

-0.2 -0.1 0 0.1 0.2 0.3

Energy (eV)

1×1011

1×1012

1×1013

109 1010 1011 1012 1013

105

B
B+F

1010 1011 1012 1013

Density n2D(cm-2)

104

105

106

107

B
B+F

ABS

M
ob

ili
ty

 (c
m

2 /V
s)

EM

EM

M
om

entum
 relaxation rate (s

-1)

a)

b)

w=4.86 nm

ABS w=4.86 nm

w=10.10 nme)

f) w=10.10 nm

c)

d)

w=10.10 nm

w=4.86 nm

Fig. 4. Mobility as a function of n2D computed including only the backward
(B) and both the forward and backward (F+B) scattering for W = 4.86 nm
(a) and 10.10 nm (b). (c)-(f): momentum relaxation rates corresponding to
absorption (ABS) and emission (EM) of AC phonons calculated for B and
F+B for the first conduction subband of 4.86 nm and 10.10 nm-wide GNRs.
n2D = 9 × 1012 cm−2.
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GNRs can be described by the empirical relation µ(W,T ) =
µ0 300 K/T (W/1 nm)α, where µ0 ≈ 500 cm2/Vs and α =
2.57. For narrow GNRs or in the subthreshold regime, µ ∝
G−1 ∝ W 2. For larger W and in the inversion regime, µ
saturates (Fig. 7a), since the number of subbands contributing
to µ rapidly increases, due to the Pauli blocking factor
f(1−f), and the DOS tends to the 2D value (DOS ∝ W ). For
a fixed W the smaller the T , the larger the µ, since µ ∝ 1/n−

q

(Fig. 7b).
According to AC in-plane phonon scattering, µ shows an

inverse dependence on T since n−
q ≈ kT/!ω for kT ' !ω

(Fig. 8a). Fig. 8b shows the mean coherence length 〈Lk〉,
defined as

〈Lk〉=
∫ kF

−kF
dkx v (k) τ (k) f (Ek) (1 − f (Ek))
∫ kF

−kF
dkx f (Ek) (1 − f (Ek))

, (4)

where v (k) = 1/! (∂Ek/∂k) is the band velocity. 〈Lk〉
increases by up to one order of magnitude within the consid-
ered interval and can be of the order of tens of nanometers
(Fig. 8b) for narrower GNRs, relaxing the ballistic assumption
generally made for ultrashort devices.

Figs. 9a-b show Lk as a function of Ek and 〈Lk〉 as a
function of W in the strong inversion regime (n2D = 9 ×
1012 cm−2) for the lowest two conduction subbands, whereas
Fig. 9c shows instead 〈Lk〉 as a function of n2D for the lowest
subband. Lk exhibits a strong energy dependence, with a wide
maximum at low energies (Fig. 9a). 〈Lk〉 increases about two
orders of magnitude with W , saturating to few thousands of
nanometers for the wider GNRs (Fig. 9b). 〈Lk〉 tends also
to increase with n2D, saturating for the wider ribbons in the
strong inversion regime (Fig. 9c).

Finally, we compare the computed mobility for
n2D = 1012 cm−2 with experimental results available
in literature for GNR, CNT and SNW (Fig. 10). First, AC
phonons are not the most limiting factor in narrow GNRs.
Second, intrinsic mobility in GNR is lower than in CNT, but
higher than in silicon-based technology.
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IV. FINAL REMARKS

In conclusion, the main learnings are: i) a full band treat-
ment of electrons and phonons is essential to obtain accurate
results. On the other hand, forward scattering can be neglected
up to widths of 10 nm. ii) Lateral confinement suppresses the
intrinsic mobility of GNRs with respect to a graphene sheet.
However, phonon-limited mobility of GNRs is 1-2 orders of
magnitude higher than that of comparable silicon nanowires.
iii) The coherence length of narrow GNRs is as low as 10
nm, therefore the ballistic transport assumption is not fully
justified for narrow GNRs. iv) Phonon-limited mobility is at
least one order of magnitude higher than mobility observed
experimentally in GNRs: new defect-free fabrication methods
could close the gap.
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