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Abstract 

Band-to-band Tunneling Field Effe
(TFETs) are emerging as a solution to b
60mV/dec sub-threshold slope limit of
MOSFETs. In this work, we present for 
multi-scale simulation results of partia
Carbon Nanotube heterojunction TFET. 
the CNT and GNR homojunction TFET
heterojunction TFETs demonstrat
sub-threshold region characteristics − 10
61% smaller Subthreshold Swing (SS) wh
range of  22~26mV/dec and the I-V am
completely eliminated. 

Introduction 

With all the fruits harvested from t
CMOS design tree, it has become clea
improvements in energy efficiency will on
through  novel and revolutionary change
design [1]. Band-to-band Tunneling 
Transistors (TFETs) have recently attracted 
the research community because of 
sub-threshold slope (SS). Conventional MO
by thermal injection over channel barrier lim
60mV/decade. In contrast, TFETs exp
quantum mechanical tunneling as the de
mechanism, leading to small SS and reduced
voltage for digital logic applications. Whil
band-to-band tunneling transistors have be
achieve SS < 60mV/dec [2], their potential a
limited by: 1) small Ion current as compared t
MOSFETs, 2) ambipolar I-V characteristic
60mV obtained only in a very limited Vgs i
work, we present for the first time, multi-
consisting of Density-Functional Theory (D
Hückel Theory (EHT), Molecular Dynam
atomistic Tight-Binding (TB) calculation
Carbon nanostructure-based TFETs with typ
barriers that results from partially unzi
Nanotubes (CNTs). The concept of unzippin
(Fig. 1,2) is promising because one can obta
GNRs with reduced roughness [3]. In add
unzipped CNT has been shown to signific
the tunneling barrier [6]. In this work, w
demonstrate for the first time that partially u
can induce type-II heterojunction betwe
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Device operating 
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gets narrow to incur large OFF current whe
3(a)). A well-defined approach based o
suppress this ambipolarity is to break the 
asymmetric doping (Fig. 3(b)) or gate electro
However, these techniques do not 
ambipolarity and the effectiveness is limited
range (Fig. 3(b)) [7]. Interestingly, heter
fundamentally break this symmetry, leadin
sub-threshold region characteristics: large ba
is used for the channel and drain region t
tunneling at the drain-channel junction 
bandgap material is selected for the sou
increase the tunneling Ion. Among various 
types (Fig. 4 i~iii), type-II is preferred over 
of smaller bandgap overlap or effective
facilitate Ion tunneling and higher energy ba
Ioff current flow [8]. This type-II heterojunc
nanostructure can be easily achieved by part
the CNTs. When CNTs are partially unzippe
difference in energy bandgaps and workfun
the primitive and unzipped CNT, which can
heterojunctions.  

Device simulation process 

The flow diagram of our multi-scal

Figure 4. Band diagram (white solid lines) and l
CNT-GNR-CNT (center) and GNR-CNT-CNT (right) c
create GNR n=16 at source/drain or channel regions.
heterojunctions are formed. Notably, the symmetric ene

CNT 
(N,0) 

GNR 
(n) 

Eg_CNT 
(DFT) 

Eg_CNT 
(EHT) φ(CNT) φ

[R

14 24 0.612eV 0.64 eV 3.783 eV 

~
13 22 0.7364 0.77 3.8215 
11 16 0.766 0.79 3.745 
10 16 0.937 1.01 3.813 
8 16 0.57 1.054 4.017 
7 14 0.497 1.184 4.201 

Table 1. Calculated electronic structures of partia
difference between the vacuum level and the Fermi lev
Theory (EHT) and the rest from Density Functional T
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ergyband diagrams as in Fig. 3(a) are not found in our GNR/CNT hetero
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Ref. 14]

Eg_GNR
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(EHT) φ(GNR) φ(GNR)

[Ref. 15]
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- φ(CNT)

~4.7eV

0.295eV 0.352 eV 3.628 eV

~4.58 eV

-0.0111 eV
0.491 0.46 3.618 -0.0485 

0.672 0.624 3.582 
-0.08 
-0.038 

4.8 -0.22 
5.1 0.12 0.047 3.567 -0.0655 

ally unzipped CNT using first principles methods. Eg: energy band
vel. For I-V calculations, we used the energy bandgaps of CNT and GNR

Theory (DFT). *Eg_eff  is an overlap between two bandgaps (Fig. 4 (ii)). 
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  -0.0185 
dgap, φ: workfunction, the energy 
R obtained from Extended Hückel 
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ITRS requirements [13]. The nominal
double-gate geometry with 1.7 nm thick Si
The channel length, Lch=15nm, the source/d
LS|D is 10nm. The source/drain used <=3e-
levels in molar fractions.  

Device simulation results 

Table 1 shows the energy b
workfunctions of CNTs and unzipped CN
from DFT and EHT methods in this work. C
possible loss of Carbon atoms during unzi
controlling etching time), a number of dif
GNRs can be produced from a single chi
Calculated results indicate that the workfunc
a function of nanotube diameter. On th
unzipped CNTs are found to have al
workfunctions because zero curvature GNR
Example combinations of zig-zag CNTs 
GNRs that make type-II heterojunctions are
1. Among these combinations, CNT (8,0) an
are chosen for further I-V calculations becau
bandgap overlap between CNT and GNR wh
is large. The DFT calculations were do
geometrical relaxation to a force toler
0.05eV/Angstrom. Difference in this limit 
to slight variations in the workfunction valu
other related works [14,15]. 

Fig. 2 illustrates the energy relaxati
partial unzipping of CNT (8,0) through M
Completely stabilized configuration show
curved GNR region before GNRs becoming c

Figure 6. I-V characterisitics of heterojunction TFE
GNR (�“flat�”) vs. completely rolled GNR. I-V
CNT-GNR-CNT with unrolled and rolled GNRs are c
in linear scale and the right plot in log scale). F
estimation, CNT(source)-GNR(channel)-CNT(drain) 
used, whose device turns on at Vgs <0 as shown in the p
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In Fig. 4, the Density-of-Stat
GNR/CNT heterojunction TFETs
row) and OFF state (bottom row
unzipped to create a-GNR n=16 a
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sufficient to have the unzipping of CNT at source/channel 
interface only for this particular device dimension and 
operation voltage range. When unzipped region (GNR) is 
used as a channel material (Fig. 1(b),(d)), device turns ON 
at Vgs <0 and OFF at Vgs >0, which effectively works as 
PMOS device. However, due to smaller bandgap of GNR 
(n=16) in the channel region, weak ambipolarity is 
witnessed (Fig. 8). 

Subthreshold characteristics of GNR/CNT 
heterojunction TFET also depend on the channel length, 
doping and Vds (Fig. 9). Direct tunneling between the 
source and drain dramatically increases with shorter 
channel length (< 15nm). Furthermore, large Vds increases 
the device off-state tunneling through the channel-drain 
junction. This tunneling disappears when Vds 0.4V and 
removes the ambipolarity (Fig. 9).  

Ion of GNR/CNT heterojunction TFETs strongly 
depends on the injecting states from the source region. 
GNR-CNT-GNR and GNR-CNT-CNT configurations show 
comparable Ion as those of GNR homojunction TFETs. On 
the other hand, CNT-GNR-CNT and CNT-GNR-GNR 
show similar Ion to CNT TFETs. However, this is a 
conservative estimation, since it can be further improved 
by an inherent stress developed in the junction region due 
to the partial unzipping of the CNT [16,17].  

 

Conclusion 

We have investigated the performance of partially 
unzipped CNT heterojunctions, by means of a multi-scaled 
approach based on DFT, EHT, MD and self-consistent TB 
simulations of carrier transport. GNR/CNT heterojunctions 
demonstrated to be good candidates for low voltage logic 
applications and show better performance in terms of low 
subthreshold slope and strongly suppressed ambipolar 
behavior as compared to CNT and GNR TFETs. 
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Figure 8. CNT-GNR-CNT heterojunction TFET I-V characteristics.
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