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Abstract-We present an investigation with a quantum model 
of shot noise suppression in a series of cascaded barriers, showing 
that the well-known diffusive limit reported in the literature on 
the basis of semiclassical models can be achieved only in the 
presence of a mechanism leading to mode mixing, such as a 
magnetic field. Without mode mixing, strong localization appears, 
because the localization length is of the order of the mean free 
path. These results are consistent with existing experimental data 
on shot noise in superlattices. 

I. INTRODUCTION 

It is well known that in diffusive conductors the power 

spectral density of shot noise at low frequencies is suppressed 

down to 113 [1], [2] of the value 2qI (where q is the electron 

charge and I is the average current) predicted by Schottky's 

theorem [3] for uncorrelated carriers. This has also been 

experimentally demonstrated [4] for the case of disordered 

metallic conductors, where the conditions for diffusive trans­

port are better achieved than in bulk semiconductors or in 

semiconductor nanostructures. 

Therefore it is well-established that both from a semiclassi­

cal and from a quantum point of view systems characterized 

by 2-dimensional or 3-dimensional disorder can lead to a Fano 

factor (ratio of the actual noise power spectral density to that 

expected from Schottky's theorem) of 113, if proper conditions 

for the disorder strength and for the number of propagating 

modes are satisfied [5], [6]. 

There was a seminal paper by De long and Beenakker [7] 

that extended this result, within a semiclassical model, to a 

series of cascaded barriers, for which, independent of barrier 

transparency, a Fano factor of 113 was found. This result 

received also a numerical confirmation from a semiclassical 

Monte Carlo simulation [8]. 

This led to a somewhat generalized belief that the 113 

suppression was to be expected also from the point of view 

of a quantum model and that l-D disorder (represented by 

randomly spaced cascaded barriers) was substantially equiva­

lent, from the point of view of shot noise suppression and of 

the onset of diffusive transport, to 2-D and 3-D disorder, for 

which a quantum model of shot noise leads to the same 113 

suppression as the semiclassical one. 

As a result, Song et a1. [9], while measuring shot noise in a 

superlattice, were expecting to find a suppression down to 113, 
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considering the large number of barriers, while they actually 

got values scattered over a rather wide range. 

Indeed, a quantum calculation of the Fano factor for a 

series of cascaded barriers yields a result [10] that may appear 

surprising at first. The computed value does not converge 

to 1/3 as the number of barriers is increased, but, rather, 

takes on different values depending on barrier transparency, 

approaching unity in the case of opaque barriers. The reason 

behind this apparent contradiction is that all semiclassical 

models are based on the definition of a well defined occu­

pancy in each region between two barriers, an occupancy 

that depends only on energy. In the presence of l-D disorder 

(represented by the barriers) this is not possible, because 

there is no mixing between different transverse modes. The 

presence of a magnetic field does, however, introduce mode 

mixing, and, under proper conditions, can lead to the 113 shot 

noise suppression limit predicted by semiclassical theories. 

Here we focus specifically on the effect of magnetic field on 

shot noise and discuss the conditions for which the diffusive 

limit may be retrieved. An equivalent approach to the physical 

system we are considering is in terms of localization length: 

in the presence of mode mixing, the localization length is 

much larger, because it corresponds to the one we would have 

without mixing multiplied by the number of modes and can 

therefore exceed the length of the device, if the number of 

modes is large enough. The effect of magnetic field in terms 

of mode-mixing and suppression of localization can easily 

be seen also from the dependence of device resistance as a 

function of the number of barriers, which crosses over from 

an exponential to a linear behavior as the value of the magnetic 

field is increased. 

A. Model 
The model we adopt for our simulations is rather simple and 

is based on the application of the recursive Green's function 

technique [11], [12] for the calculation of the transmission ma­

trix of the overall structure. We consider a series of cascaded 

barriers with a lateral hard-wall confinement: it is substantially 

a quantum wire with transverse barriers spaced by an amount 

that is varied randomly to avoid the resonances that would 

appear if the barriers were equally spaced. The structure is 

subdivided into sections, each of which corresponds to either 
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Fig. I. Layout of a channel with a series of transverse barriers; the structure 
is divided by the dashed lines into sections with a potential constant along 
the longitudinal direction. 

a barrier or an interbarrier region (see Fig. 1). Regions of 

either type are characterized by a potential that is constant 

in the longitudinal direction, therefore their Green's function 

matrix (represented, following Refs. [II], [12], in the real 

space in the longitudinal direction and in mode space along 

the transverse direction) has a known [13] analytical form. 

Also the Green's functions of the semi infinite leads that we 

assume attached at each end of the device to implement 

the proper absorbing boundary conditions are available in 

analytical form. As a result of the longitudinal invariance of 

the potential within each section, there is no mode mixing, 

and therefore the matrices representing their Green's functions 

are diagonal. Then, in order to join the Green's functions for 

the different sections, we use the Dyson equation, considering 

the connection between two otherwise separated sections as a 

perturbation: 

where GO is the unperturbed Green's function, G the Green's 

function after the application of the perturbation, V is a 

perturbation matrix, whose elements are given by the overlap 

integrals between the transverse modes in the facing sections 

times the "hopping potential" v (v = � n,2 j(2ma2), a being 

the longitudinal discretization step). The Dyson equation is an 

implicit equation, but if we represent it over the previously 

mentioned basis of the modes along the transverse direction 

and the lattice points along the longitudinal direction, with 

some algebra [13] we obtain explicit relationships that allow 

the calculation of the Green's functions of two joined sections 

from the knowledge of the Green's functions of the uncoupled 

sections. Let us consider two sections, one spanning from 

location a to location b, and the other from location c (which 

is adjacent to b) and location d (see Fig. 2): the Green's 

function matrices G�a' G�b' Ggb, G�c' G�d for the condition 

of uncoupled sections are supposed to be known, either from 

their analytical expressions (if these are simple sections with 

longitudinally constant potential) or from previous calculations 

(if they are the result of the combination of multiple elemen­

tary sections), and we want to compute Gaa and Gad for the 

situation with coupled sections. These will be the basis for the 

recursive additions of further sections to the left. The relevant 
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Fig. 2. Schematic representation of two adjacent sections to be joined by 
means of the Dyson equation: the relevant Green's functions are reported, 
with a graphic indication of the locations between which they represent the 
propagation. 

expressions are: 

At the end of the recursive procedure we get the Green's 

function matrix from a location j in the left semi infinite lead 

to a location I in the right semiinfinite lead. The transmission 

matrix between the same locations is obtained using a mod­

ified version [11] of the relationships derived by Stone and 

Szafer [14]: 

tnm = � i2V(sin8n sin8m ) 1 /2 ei (em l - en
j ) (nIGj l lm) , (4) 

where 8n (8m) is the product of the longitudinal wave vector 

for the nth (mth) mode at location j (l) by the discretization 

step a. The exact position of j and I in the leads only 

affects the phases of the elements of the transmission matrix 

and therefore has no effect on the conductance and shot 

noise power spectral densities, which are obtained according 

to the Landauer [15], [16] and Biittiker [17] expressions, 

respectively: 

(5) 

where the Tij s are the moduli of the corresponding elements 

of the transmission matrix t; 
e2 S1 = 4"hleVITr [ttt(I � ttt)] , (6) 

where V is the applied voltage bias. This can also be written 

as 

(7) 

where the TiS are the eigenvalues of the ttt matrix. 

Indeed, in the absence of a magnetic field the problem is just 

a collection of one-dimensional problems and could be treated 

in a much simpler fashion, because the transverse modes in the 

barriers and in the interbarrier regions are identical, the only 

difference being a translation of the eigenvalues corresponding 

to the height of the barriers. This implies that the overlap 

matrices V are diagonal matrices and all the Green's function 



matrices are diagonal, too. This also means that, in the absence 

of a magnetic field, the overall result is not significantly 

dependent on the number of modes. 

The recursive Green's function method becomes however 

necessary when we turn on the magnetic field, creating an 

interaction between the ditlerent modes, and therefore chang­

ing the nature of the problem from I-dimensional to truly 

2-dimensional. 

In order to include the etlect of the magnetic field, we 

consider a transverse Landau gauge, yielding a vector potential 

with a nonzero component only along the transverse direction: 

Ay(xi) = BXi, where Xi is the longitudinal coordinate of the 

ith slide, and B is the magnetic field (orthogonal to the plane 

of the device). It has been shown [18] that with such a choice 

of gauge the transverse wave functions are the same as without 

magnetic field, with the addition of a Peierls phase factor: 

Xn,xi (y) = X�,xJY) e �iKAxi Y . (8) 

where X�'Xi (y) is the n-th transverse wave function for the 

i-th section in the absence of magnetic field, AXi = BXi is 

the the tranverse component of the vector potential, n is the 

reduced Planck constant. 

This makes the inclusion of magnetic field into the recursive 

Green's function formalism very simple, because we need 

only to change the way in which the mode overlap matrix V 
is handled and constructed, since it will now be a complex 

matrix. Furthermore, for increasing values of the magnetic 

field, we will need to subdivide each section with a constant 

longitudinal potential into a number of smaller slices, because 

a requirement for the proper operation of the method is that 

each of the transverse slices be threaded only by less than a 

magnetic field quantum. 

In our calculations we consider up to a few thousand slices, 

which allows us, for a width of the order of 1 micron and 

a length of a few microns, to handle a magnetic field up to 

about 1 T. The magnetic field is considered to be constant 

in the active part of the device, while it is ramped linearly 

along the leads from zero (at the outer ends) to the value 

in the active region. The absence of a magnetic field at the 

outer leads allows us to use Eq.( 4) to connect the transmission 

matrix with the Green's function, a relationship that would not 

be valid for nonzero local magnetic field. 

II. RESULTS 

Let us first briefly discuss the results obtained without 

magnetic field, for a structure characterized by a width of 8 

J-Lm and up to 10 barriers. 

We treat the effect of finite temperature by averaging over 

an interval of about 40 J-LeV around a Fermi level at 9.03 eV 

from the bottom of the conduction band, corresponding to 

a typical value for the 2-dimensional electron gas (2DEG) 

in a GaAs/AlGaAs heterostructure. Consistently, the etlective 

mass is chosen to be 0.067 mo, the value typical for Gallium 

Arsenide. The amplitude of the interval over which averaging 

is performed corresponds to about 10 kT at a temperature of 

50 mK, typical of experiments on mesoscopic systems. A bias 
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Fig. 3. Fano factor as a function of the number of barriers for three different 
values of the average barrier transparency; solid curves are for realistic barriers 
with a dependence of transmission on the longitudinal wave vector, dotted 
curves are for idealized barriers with constant transmission; all results are 
obtained averaging over 50 sets of interbarrier distances. 

of 10 kT is usually chosen in shot noise measurements to have 

a prevalence of the shot noise power spectral density over the 

thermal noise power spectral density. 

We have also included averaging over different distributions 

for the interbarrier distances. As previously mentioned, it is 

necessary to make the interbarrier distances slightly different 

from each other, in order to avoid resonance phenomena, 

which would appear otherwise. 

This result is achieved by further averaging over 50 ditlerent 

sets of interbarrier distances (with an average value of 3 J-Lm), 

which can easily be shown to be almost exactly equivalent to 

introducing a random phase shift for each propagating mode 

when travelling between two barriers, an approach typically 

used to phenomenologically model dephasing effects. 

The results are shown in Fig. 3: it is possible to see that 

for the ditlerent values of the barrier transparencies used 

there is no clear trend towards an asymptotic value 113 of 

the Fano factor as the number of barriers is increased. We 

rather observe that for more opaque barriers the Fano factor 

is in any case over 1/3 for any barrier number, while for 

more transparent barriers the Fano factor starts from rather 

low values and then increases, without however approaching 

a clear 113 limit. For each barrier transparency we report 

two curves: a solid one corresponding to realistic barriers, for 

which the transparency is actually not exactly constant, but a 

function of the longitudinal wave vector and therefore ditlerent 

for the different propagating modes (the reported transparency 

is an averaged value, over all propagating modes), and a 

dotted one corresponding to idealized barriers (such as the 

ones considered in semiclassical models) with a constant 

transparency, independent of the wave vector. It is apparent 

that there is no significant qualitative ditlerence between the 

behaviors of the realistic and of the idealized barriers, therefore 

this cannot be the reason for the sharp discrepancy between 

the quantum and the semiclassical models. 

The actual issue at the basis of the sharp difference between 

the results of the two approaches is that the semiclassical 
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resistance as a function of the number of barriers for three different values of 
the average barrier transparency. 

model does not exhibit strong localization, while this appears 

in the quantum model, due to the phase coherence. In the 

presence of 1-D disorder, such as the one due to randomly 

spaced barriers, the localization length is of the order of the 

mean free path, thereby making it impossible to satisfy the 

inequality L « D « A, where L is the mean free path, D 
is the device length, and A is the localization length. In the 

case of 2-D and 3-D disorder there is mode mixing, therefore 

the localization length becomes of order NL [19] (where 

N is the number of propagating modes) and the inequality 

can be satisfied for a large enough N. The presence of 

strong localization can be deduced from the dependence of the 

resistance on the number of barriers (see Fig. 4): for the less 

transparent barriers the exponential dependence on the number 

of barriers is apparent. Dephasing introduced by means of 

the inclusion of a random phase (as in our calculations) 

does not remove such localization. Inelastic scattering due 

to phonons could produce a strong enough scattering, but 

in the case of significant thermal scattering Johnson-Nyquist 

noise would prevail in the device. Therefore we expect that 

in practical experimental structures, such as superlattices or a 

semiconductor quantum wire with barriers defined by means 

of transverse depletion gates [20], transport will non achieve 

the diffusive regime and the Fano factor will not be 113. 

As mentioned in the introduction, the application of a 
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magnetic field orthogonal to the plane of the device does 

introduce mode mixing: considering the gauge adopted in the 

section about the numerical model, the Peierls phase factor 

makes the wave functions in two adjacent sections different, 

thereby leading to a nondiagonal V matrix, which implies 

mode mixing. As a result of mode mixing, the localization 

length is increased, as can be deduced by the comparison 

between Fig. 4 and Fig. 5, where the resistance as a function 

of the number of barriers is reported for the same values 

of the transparency as in the previous figure, but this time 

for a 1 /Lm wide wire and in the presence of an orthogonal 

magnetic field of 0.1 T. The overall resistance is increased, 

because of the smaller width and the reduction in the number 

of propagating modes due to the magnetic field, but we notice 

that the dependence of the resistance on the number of barriers 

is now linear for the two larger transparency values, and also 

for r = 0.1 the exponential behavior is associated with a 

much larger length constant. On the basis of this effect of the 

magnetic field, we expect that it will have a significant impact 

also on the Fano factor [21], bringing it closer to the 113 value 

characteristic of diffusive transport. 

We have computed the Fano factor as function of the 

number of barriers for a 1 /Lm wide wire with a series 

of unevenly spaced barriers (the mean interbarrier distance 
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is 500 nm) and with a 0.1 T magnetic field orthogonal to 

the plane of the device, Results are reported in Fig. 6, for 

a few values of the barrier transparency. It is possible to 

see that for the two largest values of the transparency the 

Fano factor approaches the diffusive limit as the number of 

barriers increases over 25-30. This is because the amount of 

mode mixing introduced by the magnetic field increases the 

localization length A to a value much larger than the mean free 

path, so that the inequality L « D « A can be reasonably 

satisfied. For the case of barriers with lower transparency a 

much larger number of modes would probably be needed to 

approach the diffusive limit. In Fig, 7 we report, for the same 

structure, the dependence of the Fano factor as a function of 

magnetic field, in the presence of 10 barriers, It is clear that 

the main dependence on magnetic field is for values below 

0.05 T; for higher values we observe a sort of saturation of 

the effect. With 10 barriers the shot noise suppression factor 

approaches 1/3 only for a transparency of 0.75, in agreement 

with the data in Fig. 6, 
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III. CONCLUSION 

We can conclude that a system of cascaded barriers is in 

general not characterized, as the number of barriers tends to 

infinity, by the Fano factor of 113 that would be predicted 

by semiclassical theories. This is the consequence of the fact 

that localization appears in the presence of 1-D disorder and 

can be overcome only by some mode-mixing mechanism. One 

possible such mechanism is that associated with an orthogonal 

magnetic field, which, by creating interaction among the 

propagating modes, removes the localization. One could also 

think of 2-D or 3-D disorder due, for example, to randomly 

located dopants, but calculations we have performed show that 

the amount of additional disorder that would be needed is 

such that it would lead to a diffusive behavior even in the 

absence of the barriers. Therefore we believe that it is unlikely 

to observe a suppression of the Fano factor down to 1/3 due 

to I-D disorder (i.e. to a series of cascaded barriers). The only 

experimental data available so far [9] is compatible with this 

conclusion, 
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