Universita di Pisa
] ]

Quantum-Mechanical Simulation of
Shot Noise in the Elastic Diffusive
Regime

Massimo Macucci

Dipartimento di Ingegneria dell'Informazione: Elettronica, Informatica, Telecomunicazioni,
Universita di Pisa

Giuseppe Iannaccone

Dipartimento di Ingegneria dell'Informazione: Elettronica, Informatica, Telecomunicazioni,
Universita di Pisa

B. Pellegrini

Dipartimento di Ingegneria dell'Informazione: Elettronica, Informatica, Telecomunicazioni,
Universita di Pisa

M. Macucci, G. Iannaccone, B. Pellegrini, Quantum-Mechanical Simulation of Shot Noise in the Elastic
Diffusive Regime®, Proceedings of the 15th International Conference on Noise and 1/f Fluctuations in
Physical Systems, Bentham Press, London, 1999, pp. 325-328.



HONG KONG

15th International Conference on Noise in

Physical Systems and 1/f Fluctuations

Vo g SR

=l
B yorsee il

|ELECTRON Q
DEVICES
SocieTy THE HONG KONG
POLYTECHNIC UNIVERSITY




Quantum-Mechanical Simulation of Shot Noise in the Elastic Diffusive
Regime

M. Macucci, G. Iannaccone, B. Pellegrini
Dipartimento di Ingegneria dell’Informazione: Elettronica, Informatica, Telecomunicazioni
Universita degli Studi di Pisa, Via Diotisalvi 2, I-56126 Pisa, Italy

Shot noise in the elastic diffusive regime has been computed numerically for several electron
waveguides with a random distribution of obstacles. In particular, the shot noise suppression
factor has been calculated as a function of conductor length, density and height of obstacles,
number of propagating modes, and the results have been compared with existing analytical

theories.

1 Introduction

Electron transport is in the elastic diffusive regime
if the length L of the conductor is much larger than
the elastic scattering length ! and much smaller
than the inelastic scattering length /;, so that inelas-
tic scattering occurs only in the reservoirs. In this
regime, a suppression of shot noise by a factor of
one third has been predicted [1, 2] and experimen-
tally measured in a not completely conclusive way
[3]. In Ref. [1] the result has been obtained with
a coherent quantum-mechanical model: according
to random matrix theory the transmission eigenval-
ues have a bimodal distribution which leads to the
1/3 suppression factor, if | < L < NI ', where
N is the number of propagating modes. On the
other hand, the same suppression factor has been
obtained by Nagaev [2] on the basis of a semiclassi-
cal one-dimensional model which includes the ex-
clusion principle.

In both cases, the Coulomb interaction between
electrons is not included, therefore the correlations
responsible for the suppressed shot noise are those
introduced by the exclusion principle. While the
relationship between the results of both models has
been investigated and justified to some detail [4, 5],
some authors [6, 7] consider the same 1/3 factor
arising with both models a mere numerical coinci-
dence.

In this paper, we address the problem of sup-
pressed shot noise in elastic diffusive conductors
with a numerical simulation of a coherent quantum-
mechanical model. The conductor is represented
by an electron waveguide in which several obsta-

cles are randomly placed. With respect to analyti-
cal models [1] this approach has the advantage of
allowing an extensjon of the investigation to values
of transport parameters beyond the range in which
the approximations leading to the analytical results
are valid ({ « L <« NI). In addition, it allows a
transition to a semiclassical model without the need
of complex mathematical tools.

2 Model

We have represented the conductor as a 2-
dimensional GaAs wire with a width of 200 nm,
defined by hard walls and containing a uniform ran-
dom distribution of scatterers. Each scatterer corre-
sponds to an obstacle with a height v and occupies
a square area 12 nm by 12 nm. The resulting poten-
tial landscape is represented in Fig. 1, where the =
direction corresponds to that of current flow: black
squares indicate the obstacles, which may also par-
tially overlap. The coordinates of each obstacle are
generated as a pair of random numbers, with the
y coordinate uniformly distributed between zero
and the wire width (200 nm) and the z coordinate
uniformly distributed between zero and the wire
length.

In order to evaluate the shot noise level and the
conductance associated with the considered struc-
ture, we need to determine the transmission ma-
trix ¢, containing the complex transmission coef-
ficients from each input mode to each output mode
[8]. This task is accomplished by means of the
recursive Green’s function technique [9, 10]: the
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Figure 1: Structure of a conductor with L = 800 nm,
W = 200 nm, and 90 rahdomly distributed obstacles

quantum wire is subdivided into a number of trans-
verse slices, in each of which the transverse con-
finement potential can be assumed constant, then
the Green’s functions for the Schridinger equation
are obtained analytically for each section, assumed
to be isolated from the others. There is no mode
mixing within each section, due to the longitudinal
invariance of the confining potential, and coupling
between the different modes takes place only at the
interfaces between adjacent sections. By means of
a simple procedure derived from the Dyson equa-
tion [9] it is possible to obtain the Green’s func-
tions for two coupled sections from the knowledge
of those for the isolated sections. Such a proce-
dure can be repeated recursively from one end of
the conductor to the other, so that the Green’s func-
tions for the whole structure can be computed, and
from them the transmission matrix is straightfor-
wardly obtained [9].

The current noise power spectrum is given by

[8]:
51(0) = 4P/M)qV| D Tu(l = Tn), (1)

where ¢ is the electron charge, h is Planck’s con-
stant, V the voltage applied across the conductor
and T}, are the eigenvalues of the matrix t't. The
average current flowing in the conductor reads

2¢?

where G is the conductance, as given by the Lan-
dauer formula. Considering that “full” shot noise
has a power spectral density Srs = 2¢I, the sup-
pression factor -y for the resulting noise is given by:

y= SI(O) — ETn(l _Tn)

SFS Z T, ’ (3)
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Figure 2: Normalized conductance as a function of the
Fermi level for different conductor lengths. Each con-
ductors is obtained from a portion of an electron wave
guide of length 1600 nm and width 200 nm containing
180 obstacles. Results shown are averaged over 15 ran-
dom distributions of obstacles.

3 Results

In Fig. 2 the conductance G at equilibrium is plot-
ted as a function of the the Fermi level Ef for dif-
ferefit conductor lengths. Each conductor is ob-
tained as a portion of an electron waveguide with
a length L = 1.6 pum and width W = 200 nm in
which 180 rectangular obstacles with height 1 eV
are randomly distributed. Each curve is obtained
by averaging the results from 15 random distribu-
tions of obstacles.

It is easy to show that transport occurs in
regime of validity of the Drude model. In this
regime the conductance is given by [4]

GoN =l
G="T @
where Gy is the conductance quantum 2¢*/h. Fig.
2 shows very clearly that G is inversely propor-
tional to the conductor length L (only the shortest
conductor departs somewhat from this behavior).
We have also checked that the conductance is pro-
portional to the number of propagating modes .
Using Eq. (4) with the data shown in Fig. 2 one ob-
tains [ = 40.7 nm, which is in good agreement with
an estimate of [ from /W L/n, = 42.2 nm, where
7, is the total number of obstacles in the conductor.

In Fig. 3 the shot noise suppression factor -y
is plotted as a function of Ej for the cases de-
scribed above. As can be seen, shot noise increases
with increasing conductor length, but seems to sat-
urate to a value ~ around 1/3. Moreover, for
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Figure 3: Shot noise suppression factor as a function of
the Fermi level for the same cases shown in Fig. 2

a given conductor length, -y reaches a saturation
value with increasing energy (and, therefore, num-
ber of modes). This can be explained with the fact
that as the electron wavelength becomes smaller
than both the obstacle size and [ the system be-
haves classically: the distribution of transmission
coefficients is therefore independent from the elec-
tron energy, as long as the obstacles are sufficiently
high. For Ef = 0.06 eV the electron wavelength in
GaAs is 9.5 nm, already smaller than the obstacle
size and [.

The effect of the height of the obstacles can be
assessed from Fig. 4: the case is considered of a
conductor with L = 800 nm and W = 200 nm,
in which 90 obstacles are randomly distributed; the
height u of the obstacles ranges from 0.01 eV to
2 eV. If the electron energy is larger than u transport
is very poorly affected by the presence of the ob-
stacles, and shot noise is almost totally suppressed.
On the other hand, if  is much higher than the elec-
tron energy, the scattering properties of the obsta-
cles — and therefore the noise suppression factor
— are substantially independent of u. Also in this
case the results shown are averaged over 15 random
distributions of obstacles.

Fig. 5 shows the dependence of the shot noise
suppression factor on the number of obstacles for
L = 800 nm and W = 200 nm. Again, it
is evident that +y saturates with energy to a value
which increases with increasing number of obsta-
cles. These results does not allow us to draw con-
clusions on the v = 1/3 hypothesis: the deviation
from 1/3 could depend on the fact that the con-
dition ! « L < NI is not fully fulfilled, since
for 30 obstacles [ =~ 73 nm, which is not much
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Figure 4: Shot noise suppression factor as a function of
the Fermi level for a conductor of length 800 nm and
width 200 nm in which 90 obstacles of height v are ran-
domly distributed.
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Figure 5: Shot noise suppression factor as a function of
the Fermi level for a conductor of length 800 nm and
width 200 nm and ng obstacles of height 2 eV.

smaller than L, while for 180 obstacles [ ~ 30 nm
and N in our calculations is at most 46, therefore
NI < 1380, which is not much larger than L.

Finally, in Fig. 6 we report the probability den-
sity of transmission eigenvalues, computed for the
conductor just described with 180 obstacles, aver-
aged over 754 random distributions of obstacles.
The two peaks near T = 0 and T' = 1 appear
clearly. For the sake of comparison, the probability
density obtained from random matrix theory [1, 5]
is also plotted, and shows a very good agreement
with the numerical calculation.

4 Discussion

The main result of this paper is the clear evidence
of saturation of the shot noise suppression fac-
tor with increasing electron energy. As energy
increases, the classical picture progressively be-

327




)
(<]
8

400 F

200

Probability Density (a.u.

o L L 1 1
0.0 0.2 04 06 08 10
Transmission Probability

Figure 6: Probability density of transmission eigen-
modes calculated for L = 800 nm, W = 200 nm,
n, = 180, By = 0.135 eV, averaged over 754 random
distributions of obstacles (thick line) and those derived
in Ref. [4] from random matrix theory (thin line).

comes adequate for describing transport in an elas-
tic diffusive conductor. For this reason, it is not
surprising that both quantum-mechanical and semi-
classical models provide the same result for shot
noise suppression.

On the other hand, the results shown are not
sufficient to let us draw any final conclusion on the
1/3 “universal” suppression factor. Indeed, our re-
sults show that the  factor increases with increas-
ing density of obstacles, however without a clear
saturation to 1/3. The reason for such a behavior
could be that when [ is very small the number of
propagating modes considered is not sufficient to
satisfy L < N1, which is required in the analytical
derivation; on the other hand, - seems to saturate in
many cases with increasing number of modes. Fur-
ther investigation is needed on this issue, enlarging
the size of our model from the point of view of the
number of propagating modes and the number of
obstacles.
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