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Abstract

We have developed a numerical code for the three-
dimensional simulation of ultrashort channel MOSFETs
considering the effects due to quantum confinement of
electrons at the Si/SiO, interface. We have focused on
the so-called “Well tempered” bulk-Si n-MOSFETSs with
channel length of 90, 50 and 25 nm proposed by D. An-
toniadis. We found that the effect of quantum confine-
ment on threshold voltage is of the order of 100 mV,
and therefore justifies the effort for a quantum simula-
tion of nanoscale MOSFETS. In addition, we have eval-
uated the effect of the random distribution of dopants,
by simulating a large number of devices with uniform
nominal doping profile but with different actual micro-
scopic distribution of impurities, and we have computed
the threshold voltage dispersion for the above mentioned
devices.

1 Introduction

The continuous downscaling of MOSFET geometries,
that allows higher clock frequency, lower power dissi-
pation and increasing circuit complexity, has reached a
point in which quantum confinement significantly af-
fects device properties [1, 2]. The reduced gate ox-
ide thickness and the increased bulk doping, required
to control short-channel effects, cause a high electric
field in the direction perpendicular to the Si/SiO» inter-
face, strongly confining charge carriers in the channel
and splitting the density of states in the channel in well-
separated 2D subbands. Therefore, semiclassical models
are no longer suitable to describe sub-0.1m MOSFETs.
The effect of quantum confinement on MOSFET thresh-
old voltage has been investigated by Fiegna er al. [3]
in a one-dimensional MOS structure. In Ref. [4] a 2D
self-consistent model has been used to simulate n-MOS
transistors, while in Ref. [5] the charge distribution in ul-
trasmall MOSFET has been computed by solving the 2D
Schrodinger equation. However, to evaluate the effect of
the discrete distribution of inpurities, a 3D simulation
must be performed.

We have developed a code for the simulation in three

dimensions of MOSFETSs with ultranarrow channel, tak-
ing into account quantum confinement in the channel
and depletion of the polysilicon gate. The Poisson-
Schrodinger equation has been discretized with the
Box-Integration method and solved using the Newton-
Raphson algorithm.

We present results for the so-called “Well tempered”
bulk-Si n-MOSFETSs with channel length and width of
90, 50 and 25 nm proposed by D. Antoniadis [6] (the
25 nm device in basically that proposed in Ref. [7]).
As we shall show, quantum confinement increases the
threshold voltage by up to 170 mV for the smaller de-
vices.

We have also considered the effects of the random dis-
tribution of dopants on the threshold voltage pf “well
tempered” MOSFETs. Indeed, as the scaling down of
device geometries reaches the deep submicrometer re-
gion, the number of doping atoms in the depletion region
is of the order of hundreds. Consequently, intrinsic fluc-
tuations of the number and of the position of the atoms
strongly influence the value of the threshold voltage, as
pointed out in several papers [8,9, 10, 11]. Here, we will
take into account at the same time the effect of random
dopants, by performing a three-dimensional simulation,
and the effect of quantum confinement on threshold volt-
age, by solving the Schrodinger equation in the channel.

2 Model

The potential profile in the three-dimensional simulation
domain shown in Fig. 1 obeys the Poisson equation

V [(A)Vo()]
= —¢[p(®) —n(®) + Np(?) - N3 (M], (1)

where ¢ is the electrostatic potential, € is the dielectric
constant, p and n are the hole and electron densities, re-
spectively, Ng is the concentration of ionized donors
and N is the concentration of ionized acceptors. While
hole, acceptor and donor densities are computed in the
whole domain with the semiclassical approximation, the
electron concentration, in regions where confinement is
strong, needs to be computed by solving the Schrodinger



equation with density functional theory. The observa-
tion that quantum confinement is strong only along the
direction perpendicular to the Si/SiO» interface has led
us to decouple the Schrodinger equation into a 1D equa-
tion in the vertical direction and a 2D equation in the
y — z plane: the density of states in the horizontal plane
is well approximated by the semiclassical expression,
since there is no in-plane confinement, while discretized
states appear in the vertical direction.

The expression of the single particle Schrodinger
equation in 3D, with anisotropic effective mass reads
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we can write the wave function ¥(z,y, z) as

V(2,y,2) =p(2,y,2)x(y,2) (3)

Substituting (3) in (2) we obtain the following expres-
sion
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where dependenceon  , y and z is implicit. If ¢ satisfies
the Schrodinger equation along the x direction
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we can write
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and substituting (5) in (6) we obtain
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Assuming that ¢(z, y, z) is weakly dependent on y and
z,equation (7) can be approximated as
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where Fj; is the ¢-th eigenvalue of (5).

Since Ey;(y,z) in the cases considered is rather
smooth in y and z, we will assume that eigenvalues of
Eq. (8) essentially obey the 2D semiclassical density of
states.

The confining potential V' can be written as V' =
Ec+V,,., where E¢ is the conduction band and V.. is
the exchange-correlation potential within the local den-
sity approximation [12]:
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Anisotrophy of electron effective mass in silicon must
be taken into account. Solving the Schrodinger equation
while considering the effective masses along the three
directions in k-space, the electron density in confined
regions becomes

n(e) = 2elme 3l Infl + exp(ZE2f)]
e T S, Ibesl? In[1 + exp(Z5=F){10)

where y;, Ej;, ¥ and Ey; are the eigenfunctions
and eigenvalues obtained from the one-dimensional
Schrodinger equation using the longitudinal effective
mass my; and the transverse effective mass m;, respec-
tively.

To solve self-consistently the Poisson-Schrodinger
equation, we have used the Newton-Raphson method
with a predictor/corrector algorithm close to that pro-
posed in [13]. In particular, the Schrodinger equation is
not solved at each Newton-Raphson iteration step. In-
deed, if we consider the eigenfunctions constant within
a loop and the eigenvalues varied by a quantity of about
q(¢ — @), where ¢ is the potential used to solve the
Schrodinger equation and ¢ is the potential at the cur-
rent iteration, then the electron density becomes
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The algorithm is then repeated cyclically until the norm
of ¢ — ¢ is smaller than a predetermined value.

3 Results and discussion

The considered devices have the structure depicted in
Fig. 1 and the doping profiles of the “Well tempered”
MOSFETs suggested by D.Antoniadis [6]. Doping pro-
files are shown in Fig. 2 for the 25 nm channel length de-
vice, in Fig. 3 for the 50 nm channel length device, and
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Figure 1: Three-dimensional structure of the simulated MOS-
FETs

in Fig. 4 for the 90 nm channel length device. Source
and drain doping profiles are gaussian and very close to
that actually obtained, while the super halo doping is im-
planted in the channel in order to reduce charge sharing
effects that become important in such geometries.

The conduction band profile in the z-z plane for
the 90 nm channel length device is plotted in Fig. 5,
while the eigenfunctions and the eigenvalues of the
Schrodinger equation in the vertical direction at the cen-
ter of the channel are plotted in Fig. 6: as can be seen, the
first eigenvalue, corresponding to the botton of the first
subband, is more than 200 mV above the minimum of
the conduction band and the peak of the first eigenfunc-
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Figure 2: Difference between donor and acceptor concentra-
tions for a MOSFET with channel length of 25 nm
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Figure 3: Difference between donor and acceptor concentra-
tions for a MOSFET with channel length of 50 nm
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Figure 4: Difference between donor and acceptor concentra-
tions for a MOSFET with channel length of 90 nm
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Figure 5: Conduction band of the 90 nm MOSFET in the z-z
plane at inversion
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Figure 6: Conduction band profile at the center of the channel
for the 90 nm MOSFET and discrete energy levels with asso-
ciated eigenfunctions in the vertical direction

tion is about 1 nm from the Si-SiO» interface. As is well
known, these two aspects are responsible for increased
threshold voltage and degraded transconductance.

The threshold voltage increase due to quantum con-
finement has been evaluated quantitatively for the three
MOSFET structures considered.

In Fig. 7 we plot both the threshold voltages obtained
with the model described above and with a semiclassical
model: the difference, as expected, increases with de-
creasing channel length (due to decreasing oxide thick-
ness and increasing channel doping).

We compute Vp from the curve of channel conduc-
tance as a function of gate voltage, as the intercept of
the line approximating the curve in the strong inversion
region with the horizontal axis. The drain to source volt-
age Vpg is set to zero. The assumption of zero Vpg is
a limitation of our approach and does not allow us to
take into account drain-induced barrier lowering. In ad-
dition, the definition of V7 we use can give a different
value compared to other commonly used definitions [1].
However, we believe that our evaluation of Vr-shift due
to quantum confinement is quantitatively accurate.

For small Vps and Vs > Vp the current has the
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Figure 7: Threshold voltage as a function of the channel length
w

Figure 8: Boundary condition in the region belonging to the
channel and used to compute the conductance

following expression

w
Ip = unfcox(VGS - Vr)Vps (12)
where u, is the electron mobility in the channel and
C,; is the oxide capacitance per unit area. For sim-
plicity we assume constant electron mobility u, =
700 cm?V s~ ! The conductance gy is therefore
0lp w
= —— =tn—Cox(Vas — V1 13
9= 3vps ~ T (Vas —=Vr)  (13)
In the plane go-Vias, Vr is the intercept of the curve
given by ( 13) with the Vzg axis.
The conductance is computed as follows. In the drift-
diffusion model the current density can be written as

—

Jn = —qnup,NVo + qDVn (14)

where D is the electron diffusion coefficient.

For each MOSFETs structure we can consider a re-
gion belonging to the channel as shown in Fig. 8. If ¢g
is the potential profile computed with Vps = 0, we can
write

0 = —qnounVeoo + gDVny, (15)



where ng is the electron density at equilibrium. By
applying null Neumann boundary conditions on lateral
faces and a small voltage of voltage A¢ between the
surfaces in the proximity of the source and drain as de-
scribed in Fig. 8, by considering the variation the diffu-
sion current negligible with respect to the drift term, we
have

Tn = —anopn Ve, (16)
where ¢' = ¢ — ¢o. The continuity equation

-

V-J,=0 17)

gives us

V- (noVe') =0 (18)

Solving this linear system we find ¢' from which we can
obtain .J,, and therefore gq.

3.1 Threshold voltage dispersion

As MOSFET scaling approaches the sub-100 nm
regime, the number of impurity atoms is of the order
of hundreds in the channel depletion region. Intrinsic
dopant fluctuations determine a significant dispersion
of the threshold voltage. Since, as we have seen, the
threshold voltage is also significantly affected by quan-
tum confinement in the channel, we believe both aspects
have to be included in an accurate simulation. Our code
allows us to solve in 3D the poisson equation, and there-
fore to take into account the “atomistic” distribution of
impurities, and to include quantum confinement by solv-
ing the Schrodinger equation in the vertical direction.
Three-dimensional semiclassical simulations of the ef-
fect of random dopants have appeared in the literature
[8, 9], and quantum effects have been included with the
density-gradient formalism [11].

We have assumed that the implanted ions in the chan-
nel obey the Poisson distribution. In particular, for each
gridpoint we have considered the associated volume ele-
ment and multiplied its volume AV by the nominal dop-
ing concentration. Then, a random number N’ has been
extracted with Poisson distribution and divided by AV
in order to have the “actual” doping concentration in the
volume element. The standard deviation of V- has been
then obtained by simulating a large number of devices
with the same nominal doping, but with different actual
dopant distribution. Figs. 9,10 and 11 show the distri-
bution of threshold voltage computed on an ensemble of
100 nominally identical devices : V0, is the thresh-
old voltage in case of uniform doping distribution.

4 Conclusion

We have developed a three-dimensional Pois-
son/Schrodinger solver and we have simulated
three nanoscale “Well tempered” MOSFETs. In
the considered devices the quantum confinement is
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Figure 9: Threshold voltage dispersion in a 25-nm MOSFET
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Figure 10: Threshold voltage dispersion in a 50-nm MOSFET
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Figure 11: Threshold voltage dispersion in a 90-nm MOSFET



relevant along the x direction, so we have solved the
Schrodinger equation only in one dimension, with
reduced computational requirements with respect to a
full 3D quantum model. Simulations have shown that
the threshold voltage shift due to quantum confinement
is significant and increases with device scaling down:
a quantum simulation is therefore required to obtain
results in quantitative agreement with experiments. As
geometries scale down, also the effect of the discrete
distribution of dopants becomes important and affects
important properties such as the threshold voltage. Our
code has allowed us to take into account simultaneously
the effects of the random distribution of dopants and
of quantum confinement in the channel on threshold
voltage.
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