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Abstract

In this paper we present a derivation of a very convenient approach to include quan-
tum confinement effects in drift-diffusion or hydrodynamic device simulators, without
explicitly solving the Schrödinger equation. With respect to similar methods recently
proposed in the literature, the presented approach has a few advantages: it does not de-
pend on the transport model (drift-diffusion or hydrodynamic); it can straightforwardly
include Fermi-Dirac statistics; it provides an additional degree of freedom for calibra-
tion, which is particularly useful for considering non planar device structures; finally, it
can be discretized in such a way to exhibit very stable convergence properties.

1 Introduction

The theoretical basis for the definition of an effective quantum potential is Bohm’s
interpretation of quantum mechanics, which dates back to 1952 [1], and is at the origin
of other more recent derivations based on a first order expansion of the Wigner equation
[2], or on the so-called density gradient approach [3].
The great advantage of such a method consists in the possibility to correctly model
quantum effects without the explicit solution of the Schrödinger equation and, more
importantly, to be easy integrable in widespread simulation approaches based on drift-
diffusion or hydrodynamic equations. Therefore, the capability of commercial device
simulators, generally based on the approximate solution of the semiclassical Boltzmann
equation, can be conveniently extended also to the quantum regime which is relevant in
recent nanoscale semiconductor technology.

2 Model

According to Bohm’s interpretation of quantum mechanics, if we write the wave func-
tion in a polar representation, i.e., Ψ = R exp

�
iS

h̄

�
where R, a probability density per

unit volume, is the modulus of Ψ and S has the dimension of an “action” (energy ×
time) and represents the phase of Ψ multiplied by h̄, the Schrödinger equation can be
written as:
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SinceM−1∇S is the local velocity of the probability density flux i.e. the local velocity
of the particle associated to the wave function, the real part of (1) may be interpreted



as a continuity equation of the probability density while the imaginary part states that
the total energy E is conserved and equal to the sum of the potential energy V , of
the kinetic energy 1

2∇S · M−1 · ∇S, and of the term Q = − h̄2

2

∇(M−1∇R)
R which is

interpreted as the “quantum potential”.
According to the previous derivation, the Schrödinger equation has been transformed
into two coupled continuity and energy conservation equations, in which quantum me-
chanics manifests itself only in the quantum potential term. It is worth noticing that
if the term Q is forced to zero, a complete classical system is recovered. Since the
quantum term Q is obtained by the single particle Schrödinger equation, in our model
we use a sort of “mean field approximation” and consider an “effective quantum Bohm
potential”, defined as the weighted average potential for all the carriers constrained in
the confining potential. The weights are represented by the probability density of all
states in the considered position. In particular, after weighting, for a quantum system
of electrons (the electron density can be written as n =

�
i fiR2

i ), we obtain for the
effective potential the following expression:
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where we have defined the two parameters
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Parameters γ and α depend on the device structure and on the applied bias. In our
approximation, we consider them as constant parameters obtained from a fitting proce-
dure, greatly simplifying the computation of the quantum potential and eliminating the
need for a direct solution of the Schrödinger equation.
Moreover, it must be mentioned that two different parameters, instead of one [4], pro-
vide an additional degree of freedom during the calibration procedure since they can be
used differently to tune the model in regions where confining potential is strong and in
regions where carriers are only weakly confined.
Out of equilibrium, the occupation factor fi of state i may depend on position, and the
above equations are not directly applicable. Therefore, we cannot assume, as we do in
equilibrium, that ∇n =

�
i fi∇(R2

i ). In that case we have to simply define a special
partial differentiation operator ∇̃ as ∇̃n ≡

�
i fi∇(R2

i ). If, for example, a transport
model such as the hydrodynamic model is used, the occupation factor of an electron
state depends on the quasi-Fermi level Efn and the carrier temperature Te, which are
both a function of position, i.e., fi = fi[Efn(r), Te(r)], then the relationship between
∇̃ and∇ is simply

∇n = ∇̃n +
�
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�
. (5)



In plain language, ∇̃n is a partial gradient of n, that does not take into account tempera-
ture and quasi-fermi level gradients. Out of equilibrium, independently of the transport
model used, equation (2) becomes:

Qeff = − h̄2
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3 Results

In the following we will focus on structures where quantum confinement is strong in
one and two directions and the results obtained with the quantum potential approach
are compared with those obtained from a fully quantum calculation. In particular, the
first considered structure is a MOS capacitor with oxide thickness of 2 nm and acceptor
concentration in the bulk NA = 1 × 1018 cm−3. In our simulations we have included
a metal gate, in order to study only the confinement of electrons in the channel, and
have neglected quantization and depletion of the polysilicon. In Figure 1 (top) we show
a comparison between the electron density profiles computed by coupling the Poisson
equation both with the one-dimensional Schrödinger equation and those obtained with
the effective Bohm quantum potential equation. Also shown on the left are the C-
V curves obtained with the two different methods. The fitting parameters using for
such device are γ = 1.089, α = 0.5 (Fig 2(c)). The second device considered has
the structure depicted in Figure 2(a). The oxide thickness is 2 nm and the acceptor
concentration is NA = 1018 cm−3. Quantum confinement is strong in both the x and
y directions, so a complete solution of the Schrödinger equation in two dimensions is
required. As can be observed in Figure 2(b), the effective quantum potential method is
capable to get both the height and the shape of the carrier density profile as the applied
voltage is varied. The method is also capable to well reproduce the carrier density per
unit area obtained with the direct solution of the Schrödinger equation.

4 Conclusion

In summary, we have proposed an expression for an effective quantum potential, an ap-
propriate algorithm and a discretization scheme. The model has been implemented
into the ATLAS device simulator by SILVACO, both for drift-diffusion and energy
transport models. With respect to previously published density gradient methods the
main advantages of our proposal are represented by the possibility of including both
Maxwell-Boltzmann and Fermi-Dirac statistics, by its independence of the transport
model adopted, and by the presence of an additional degree of freedom, which may
provide better fit and improved calibration. The authors gratefully acknowledge sup-
port from SILVACO GRECE (Grenoble REsearch CEnter).
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Figure 1: Top: electron density along the growth direction for a voltage applied to the
gate of VG=3 V and VG = 1 V obtained with the EBQP (Effective Bohm Quantum
Potential) approach and with the PS approach. Bottom: C-V characteristics obtained
with the EBQP approach and with a fully quantum approach.
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Figure 2: (a)Schematic representation of the wire composed by a silicon layer embed-
ded in a SiO2 layer. (b) Electron density along the growth direction (left) and along
the longitudinal direction (right) for a voltage applied to the gate of VG=1 V obtained
with the EBQP approach and with the PS approach. (c) Electron density per unit area
obtained with the EBQP approach and with a fully quantum approach.


