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ABSTRACT

We present simulations of the effects of dephasing on the shot noise properties of mesoscopic coherent devices, such
as chaotic cavities and Aharonov-Bohm rings. We adopt a phenomenological model that exploits the statistical
nature of the dephasing mechanism and is able to cover the intermediate regime between a fully coherent and
completely incoherent (i.e., semiclassical) transport. By investigating conductance and noise properties as a
function of the dephasing length, we conclude that decoherence has no specific effect on shot noise which can be
distinguished from the one it has on conductance. In addition, when a large number of conducting channels is
considered, semiclassical and quantum behavior must converge, yielding as a consequence the independence of
DC and noise properties from dephasing.

Keywords: Shot noise, dephasing, mesoscopic transport, scattering matrix

1. INTRODUCTION

Phase coherence has a very important role in mesoscopic transport, in particular in the case of devices based on the
wavelike behavior of electrons, such as electronic interferometric modulators,' and Aharonov-Bohm rings. The
operation of such devices is possible because the evolution of the wave function, as predicted by the Schrédinger
equation, is continuous and fully deterministic. However, decoherence due to the interaction between carriers
and the environment? causes the loss of the predictability of the evolution of the system and may undermine the
operation of such devices. Therefore, it is important to assess quantitatively the dependence of DC and noise
properties of such devices on the dephasing length of the system ly, i.e., the length under which the electron loses
quantum coherence, which yields information on the degree of decoherence of the system. The length [, can
be typically determined, in the diffusive regime, by Weak Localization (WL)?® measurements on various types of
samples.* '

Usually, ballistic transport in mesoscopic structures is addressed in the framework of the Landauer-Biittiker
theory of transport,® which does not allow to include directly the effects of dephasing. Such effects are usually
treated with phenomenological models, which are based on the insertion of a virtual voltage probe® into the
ballistic region: electrons traveling from source to drain can be absorbed by the third probe, where they lose
their phase information before being re-injected into the conductor. Such proposal was generalized in order
to address a non local treatment of decoherence, both considering a probe with infinite modes and vanishing
tunneling rate” and considering an arbitrary number of probes uniformly distributed in the device domain.8
Alternatively, the effect of dephasing can be modeled by adding an imaginary potential to the Hamiltonian in
the device region,”!® which acts as an absorber of the wave function, and introducing an adequate mechanism
for the re-injection of phase-randomized particles, in order to ensure continuity of the total current probability
density.

An alternative phenomenological method that treats decoherence as a phase randomizing statistical process
has been recently proposed and implemented with a Monte Carlo technique.!!  Such technique is based on
a phenomenological microscopic model, which captures the effect of elastic interactions in terms of a random
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term added to the phase of the single particle wave function. Given the random character of scattering events,
each Monte Carlo run provides a particular occurrence of the reduced single particle scattering matrix. Average
transport properties are obtained from large samples of Monte Carlo runs.

From the modeling point of view, researchers typically have to simplify the transport model, reducing it to
the limit of complete coherence, or to the opposite limit of incoherent transport using a semiclassical model that
does not address interference effects. In general terms, if the Fermi wave length approaches zero or the number
of conducting channels N tends to infinity, and the conductance is much larger that the conductance quantum
e?/h, approaches based on completely coherent transport yield the same result as semiclassical approaches, due
to the correspondence principle.

As far as shot noise is concerned, even for finite N, approaches based on completely coherent transport often
yield the same result as semiclassical ones. Such is the case, for example, of the so-called 1/3 suppression of shot
noise in diffusive conductors, which was obtained both with a quantum mechanical theory, such as Random- i
Matrix Theory (RMT),'® and in semiclassical terms, using the Boltzmann-Langevin equation.!*  Similar
agreement has been obtained for the so-called 1/4 suppression of shot noise in chaotic cavities,!>1® and also for
shot noise in single-electron transistors and resonant tunneling structures.!?-19

In this paper, we investigate the effect of dephasing on shot noise properties of chaotic cavities and Aharonov-
Bohm rings by means of numerical simulations based on the above mentioned statistical model for dephasing.
In such a way, we are able to explore the whole regime between completely coherent and completely incoherent
transport. We observe a constant level of shot noise as a function of the dephasing length only for the case of
few propagating modes. We find, for a very small number of propagating modes in the channel, a dependence of
shot noise and conductance on l,. However, as we increase the number of open channels, conductance and noise
properties become simultaneously independent of the dephasing length. This allows us to conclude that, at least
in the cases we have examined, shot noise does not contain additional information on decoherence with respect
to that already contained in the conductance. In Sec. 2 we present the statistical approach to dephasing in the
scattering matrix formalism, and in Sec. 3 we show numerical results for a mesoscopic cavity that in the classical
limit presents chaotic behavior and for an Aharonov-Bohm ring that is used for its interference properties in
mesoscopic physics. Finally, in Sec. 4 we provide our conclusions and final considerations.

2. MODEL

In this Section we present a phenomenological approach for including dephasing in the simulation of mesoscopic
devices based on the scattering matrix technique. Such method treats decoherence as a random fluctuation of
the phase of the propagating modes involved in the computation of the scattering matrix, and enables us the
obtain average conductances and noise spectra from a sufficiently large ensemble of Monte Carlo simulations.
Here, we just provide a brief overview of the model; details can be found in a previous paper.!!

The model has been developed within the framework of the Landauer-Biittiker theory® of transport in meso-
scopic devices. The conductance of a generic device is related to the transmission probability matrix T = tt' by
the formula

2
e
ngﬁZTn, (1)

where ¢ is the transmission amplitude matrix, g is a degeneracy factor (g = 2 in our case due to spin degeneracy)
and the sum is over the all the eigenvalues T}, of the transmission probability operator T'.

The device domain is discretized and then divided into a number of slices N, along the propagation direction
(i.e. the z-axis). The electronic wave function at the j-th slice reads

Xj.n y) ikjnx —tkjnx
Vile) = 3 s (i€ by o) @

where x;n(y) are the transverse eigenvectors with elgenenergles E; » and the longitudinal wave vectors k; ,, are
related to the total energy E by the condition E = E; ,, +h%E2 in »/2m;. The wave function normalization of Eq (2)
corresponds to unitary current probability. The sets of coefficients a; , and b;, represent the transmission and
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reflection amplitudes in the j-th slice, and can be obtained by enforcing the continuity of the wave function and
of the current density at the interface between the j-th and the (j + 1)-th slice. The scattering matrix S; relates
the coefficients of the wave functions of the j-th and (4 + 1)-th slices as follows:

(e )=s()=(0 8) (). o

where the symbols ¢, ¢, r and 7' indicate the transmission and reflections matrices. The composition between

two adjacent scattering matrices S; and S yields a matrix S = S; ® S, with transmission and reflection matrices
given by:

r = r+ tll(l - TzT';)_ngtl (4)
= t2(1 —Ti?‘z)—ltl

t = (1= rer)) e,

o= rh+ta(l—rire)Tirlel

The total scattering matrix of the structure S is given by the composition S =5, 5, ®---® S N.—1, where the
symbol ® represents the operation described by Egs. (4).

The presence of a magnetic field B = Bz perpendicular to the propagation plane zy, can be taken into account
by adopting the transverse gauge A = Bzy = A(z)y for the vector potential A = V x B. The new Hamiltonian
can be written as the sum of two terms: H(z,y) = Hirans(y)+ Hiong (z), where Hyans = [Py —eA(z;)]?/2my,+V (y)
refers to the transversal part of the Hamiltonian and Hyong = p2/2m, to the longitudinal one. The eigenvectors
are given by the product of the eigenvectors for the two Hamiltonians, that are plane waves for Hyong and the
vectors

Xn,i(y) = X5, ;(y) exp[—ieA(z;)y/h] (5)

for Hirans, where X%,j (z) are the solutions in the case B = 0. Furthermore, with this gauge, the eigenvalues
Ejn are not altered by the presence of the magnetic field. We note that the condition for the validity of the
discretization of Hirans is that the magnetic flux through a generic slice [A(z;4;) — A(z;)]W is much smaller
than the quantum unit of flux h/e, where W is the transverse device length.20

We introduce in our description the effects of decoherence as a dephasing of the wave function in Eq. (2).
The coherent propagation through the j-th slice is described by a diagonal transmission matrix with elements
etkimdig  where d; = zj41 — z;. We modify the transmission matrix by adding to each diagonal term a
random phase ¢r so that the generic element of the transmission matrix becomes

R ei(kj‘mdj+¢R)6mn_ (6)

¢r is extracted by a random number generator and obeys a zero average Gaussian distribution with variance
2 _
(7]- = dj /l¢.
The scattering matrix obtained in such a way only represents a particular occurrence of the reduced scattering
matrix of the single particle. The average reduced scattering matrix is obtained by averaging the conductance
over a sufficient number of runs, typically of the order of one hundred. In this way we take into account the

intrinsic statistical character of the dephasing process. We emphasize that the usual properties of the scattering
matrix S, such as unitarity

SSt =1 (7)

and the Onsager-Casimir relations,?! valid for a multi-probe conductor,
qu(B) = T, (_B) (8)
RPP(B) = Ryp(-B) 9)

still hold.!* In Eq. (8,9) Ty, and Ryq are the transmission and reflection probabilities between the leads denoted
by labels p and q.
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3. NUMERICAL RESULTS

In this Section we apply the phenomenological model described in Sec. 2 to a chaotic cavity and to an Aharonov-
Bohm ring and compute the conductance and noise properties as a function of the dephasing length .

We consider a system out of equilibrium and are interested in the shot noise of a two-terminal sample at zero
temperature. Using the scattering matrix representation and its unitarity,?> we obtain the general expression
of the low noise spectral density of shot noise

2% 4 . 2¢’ toygt
Sy = S~ Trlr'rt tle|V] = TTr[(I — ttt)ttele|V], (10)

where V is the voltage applied between the leads and the symbol Tr[T'] indicates the trace of the matrix 7'
Equation (10), in the basis of the eigenvalues T,, (with n = 1,...,N) of the transmission operator T' = t't reads

2e3|V|
Sn="—=— ;Tn(l ~Ty) . (11)

In the case of small transmission of all modes (T,, < 1,Vn) we recover the so-called “full” shot noise spectrum

2e3|V
Stuil = 14 ZTn . (12)
n

h

In particular, neither closed (T, = 0) nor open (T, = 1) channels contribute to the sum in Eq. (11), whereas the
maximum contribution arises from channels with T,, = 1/2. The shot noise spectral density Sy is always smaller
than or equal to Sgu and therefore it is convenient to define the noise suppression factor or Fano factor as

_ Zn Tn(l - Tn)
Y= En T, ’

which can be interpreted as a signature of quantum correlations, in our case due to the fermionic nature of charge
carriers.

(13)

First, we consider a circular GaAs quantum dot with a diameter of 1.5 pm connected to two leads with a
width of 50 nm, which is known to exhibit a Fano factor of 1/4, as obtained by both quantum and semiclassical
models for N > 1.12 The transmission probability T}, of each channel obeys the distribution function P(T5),
which can be computed using RMT!® !¢ and is given by

1 1
7 /Tl = 1Tp)

Equation (14) indicates that almost open (T, ~ 0) and almost closed (T, ~ 1) channels are preferred with
respect to the others. Given the large number of propagating channels involved in calculations, it is convenient
to express the conductance and the Fano factor in terms of the first two moments of the transmission probability.
Using Eq. (14), we obtain (T},) = 1/2 and (T(1 — T,,)) = 1/8, which yield the conductance value

P(Tn) = (14)

2e? N
G=—F——, 15
WD (15)
where N is the number of conducting modes in the leads. Similarly, we obtain the Fano factor v = 1/4, which,
when the number of conducting channels in the left lead N, is different from the one on the right lead Ng, can
be generalized to the expression
N Ng
== 16
7 (N .+ N, 3)2 (16)
In the case of completely incoherent transport regime a result identical to Eq. (16) is obtained by solving the
semiclassical Boltzmann-Langevin equation.??
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Figure 1. Distribution of the transmission matrix eigenvalues for a Ssymmetric cavity with 9 propagating channels in the
leads, for I, = 0.1 ym. The cavity has a radius of 750 nm and leads have a width of 50 nm (shown in the inset). Thick
line: distribution obtained from an ensemble of 100 Monte Carlo runs; thin line: distribution provided by RMT.
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leads, for Iy = 10 pm. The cavity has a radius of 750 nm and leads have a width of 50 nm (shown in the inset). Thick
line: distribution obtained from an ensemble of 100 Monte Carlo runs; thin line: distribution provided by RMT.

9 conducting channels in the leads, and more than 250 in the center of the cavity for the case of a dephasing
length I, = 0.1 ym, a completely incoherent regime. Similarly, in Fig. 2 we show the same quantity for the case
of ls = 10 pm, that is transport regime with a larger degree of coherence. The details of the two distributions
are very similar and are in very good agreement with the analytical expression of Eq. (14), given by the thick
line.

In Fig. 3 we show how the conductance G of the quantum dot is modified by the effect of decoherence. We
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Figure 3. Conductance of the chaotic cavity shown in the inset of Fig. 1,2 versus the Fermi energy Er. The lines
correspond to the case of Iy = 00, Iy = 100 pm (thin line) and Iy = 0.1 pm (thick line). The various points labeled with
arrows indicate the values of the Fermi energy for which the Fano factor of Fig. 4 is computed.

plot both the case of coherent transport ((I4 = 00), and of quasi-coherent transport (I, = 100 pum), characterized
by large fluctuations of G as a function of the Fermi energy (the so-called universal conductance fluctuations),
and the case of incoherent transport with [, = 0.1 um that is characterized by a staircase behavior. In particular,
we note that the conductance steps for large N become close to Go/2 = e?/h, as predicted by Eq. (15).

In Fig. 4 we show the most important result of the paper: the dependence of the Fano factor of the chaotic
cavity on the dephasing length [, which indicates the degree of coherence of the system. From the bottom to
the top we show the results obtained at the fixed Fermi energies labeled by arrows in the conductance staircase
of Fig. 3. As a first comment, we observe that for N > 3 the Fano factor and the conductance are practically
independent of the dephasing length and therefore shot noise measurements cannot provide additional information
on phase coherence with respect to DC measurements. This is connected to the fact that the different degree
of coherence does not alter the transmission distribution P(T},), as shown in Figs. 1,2. Conversely, we observe
that the Fano factor, when the conductance is of the order of the fluctuation magnitude, strongly depend on the
dephasing length.

In order to confirm our previous results, we consider a second mesoscopic structure, an Aharonov-Bohm ring
with an external radius of 750 nm, an internal radius of 450 nm and a lead width of 50 nm. Such a structure can
be obtained from the previous quantum dot by adding a central antidot, it is used in experiments on quantum
interference and exhibits a sensitive resonance phenomenon.

In Fig. 5 we sketch the Fano factor for the same energy values used for the chaotic cavity. Also in this case we
find that the dephasing mechanism, when the number of open channels is large enough, does not affect the Fano
factor, which is slightly larger than 0.25. Again, in the case of a single propagating mode in the structure we note
a dependence of the average value of the Fano factor, confirming a dependence on dephasing when conductance
is dominated by a resonance, and is also affected by dephasing.

4. CONCLUSIONS

In this paper, we considered ballistic structures such as chaotic cavities and Aharonov-Bohm rings, and computed
the dependence of conductance and noise on the degree of phase coherence in the system. We have developed
a novel method that exploits the statistical nature of the decoherence mechanisms by adding a random term to
the phase accumulated by the carriers traveling in the conductor and then performing a statistical average over
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Figure 5. Fano factor (T'(1—-T))/(T) of the Aharonov-Bohm ring a function of the dephasing length for different energies.
From the bottom to the top we show only the cases corresponding to N = 9,5, 1. The device is obtained from the quantum
dot sketched in Fig. 1,2 by the insertion of a central antidot of a diameter of 0.9 ym (shown in the Inset).

ACKNOWLEDGMENTS
Financial support from the IST NanoTCAD project (EC contract IST-1999-10828) is gratefully acknowledged.

REFERENCES

1. F. Sols, M. Macucci, U. Ravaioli, and K. Hess, “On the possibility of transistor action based on quantum
interference phenomena”, Appl. Phys. Lett., 54, 350-2, 1989.

2. A. Stern, Y. Aharonov, and Y. Imry, “Phase uncertainty and loss of interference: A general picture”
Phys. Rev. A, 41, 3436-3448, 1990.

3. B.L. Altshuler, A.G. Aronov, and D. Khmelnitskii, “Effects of electron-electron collisions with small energy
transfers on quantum localisation”, J. Phys. C, 15, 7367-7386, 1982.

4. C.W.J. Beenakker and H. van Houten in Solid State Physics, vol. 44, Semiconductor Heterostructures and
Nanostructures (Academic Press, San Diego, 1991) pags. 1-228.

5. R. Landauer, IBM J. Res. Dev. , 1, 233 (1957); M. Biittiker, “Four-Terminal Phase-Coherent Conductance”,
Phys. Rev. Lett., 57, 1761-4, 1986.

6. M. Biittiker, “Role of quantum coherence in series resistors”, Phys. Rev. B, 33, 3020-6, 1986.

7. P. W. Brouwer and C.W.J. Beenakker, “Voltage-probe and imaginary-potential models for dephasing in a
chaotic quantum dot”, Phys. Rev. B, 55, 4695-4702, 1997.

8. T. Ando, “Crossover between quantum and classical transport: quantum Hall effect and carbon nanotubes”,
Physica E, 20, 24-32, 2003.

9. G. Czycholl and B. Kramer, “Nonvanishing zero temperature static conductivity in one dimensional disor-
dered systems”, Solid State Comm., 32, 945-951, 1979.

10. K. B. Efetov, “Temperature Effects in Quantum Dots in the Regime of Chaotic Dynamics”, Phys. Rev. Lett.,
74, 2299-2302, 1995.

11. M.G. Pala and G. Iannaccone, “Statistical model of dephasing in mesoscopic devices introduced in the
scattering matrix formalism”, to be published on Phys. Rev. B. Preprint: cond-mat/0312478

12. Y. Blanter and M. Biittiker, “Shot noise in mesoscopic conductors”, Phys. Rep., 336, 1-166, 2000.

13. C.W.J. Beenakker and M. Biittiker, “Suppression of shot noise in metallic diffusive conductors”, Phys. Rev. B,
46, 1889-1892, 1992.

58 Proc. of SPIE Vol. 5472




e e e ks =

14. N.E. Nagaev, “On the shot noise in dirty metal contacts”, Phys. Lett. A, 169, 103-7, 1992.

15. H.U. Baranger and P. Mello, “Mesoscopic transport through chaotic cavities: A random S-matrix theory
approach”, Phys. Rev. Lett., 73, 142-5, 1994.

16. R.A. Jalabert, J.-L. Pichard, and C.W.J. Beenakker, “Universal quantum signatures of chaos in ballistic
transport”, Furophys. Lett., 27, 255-60, 1994.

17. M. Biittiker, “The quantum phase of flux correlations in waveguides”, Physica B, 175, 199-212, 1991.

18. L.Y. Chen and C.S. Thing, “Theoretical investigation of noise characteristics of double-barrier resonant-
tunneling systems”, Phys. Rev. B, 43, 4534-7, 1991.

19. G. Iannaccone, M. Macucci, B. Pellegrini, “Shot noise in resonant tunneling structures, Phys. Rev. B, 55,
4539-4551, 1997.

20. M. Governale and D. Boese, “Magnetic barrier in confined two-dimensional electron gases: Nanomagnetome-
ters and magnetic switches”, Appl. Phys. Lett., 77, 3215-7, 2000.

21. L. Onsager, “Reciprocal Relations in Irreversible Processes”, Phys. Rev., 38, 2265-2279, 1931;
H.B.G. Casimir, “On Onsager’s Principle of Microscopic Reversibility”, Rev. Mod. Phys., 17 , 343-350, 1945.

22. M. Biittiker, “Scattering theory of thermal and excess noise in open conductors”, Phys. Rev. Lett., 65,
2901-4, 1990.

23. Ya.M. Blanter and E.V. Sukhorukov, “Semiclassical Theory of Conductance and Noise in Open Chaotic
Cavities”, Phys. Rev. Lett., 84, 1280-3, (2000).

Proc. of SPIE Vol. 5472 59



