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Abstract:

A three-dimensional simulation approach for the inves-
tigation of Carbon NanoTube Field Effect Transistors
(CNTFETs) is presented, based on the self-consistent so-
lution of the 3D Poisson-Schrédinger equation with open
boundary conditions, within the Non-Equilibrium Green’s
Function formalism. This approach enables accurate
simulations of transport through ballistic CNTFETs for
generic device structures, eliminating the use of ideal ge-
ometries, such as coaxial devices, often used in order to
simplify the electrostatics of the device.

1. Introduction

Carbon NanoTubes (CNTs) represent a promising alter-
native to conventional silicon technology for future nano-
electronics at the end of the roadmap. Since the first work
on the topic by lijima [1], significant improvements have
been achieved, both from the point of view of technology
and physical modeling.

In particular, Schottky Barrier CNT FETs have been
demonstrated by Heinze et al. [2], where the modulation
of the current is mainly determined by the field-induced
modulation of the NanoTube band structure at the CNT
ends. Such aspect can represent a limit for the perfor-
mance of the CNT FET, because of the ambipolar behav-
ior, and the possible degradation of electrical properties
like I,,/Iog ratio, especially for NanoTubes with large
diameters.

On the other end channel modulation of the barrier can be
achieved by ohmic contacts at the source and drain ends,
choosing a proper metal for the contacts [3] or inducing
charge in the source and drain regions, by doping the reser-
voirs as reported in Ref. [4].

In this scenario, adequate physical models and simulation
tools are necessary not only to provide explanations to the
experimental results, but also to define device guidelines
for the fabrication of CNT FETs, with performance com-
parable to their mainstream silicon counterpart.

A simplified approach is that in [5], where the poten-
tial profile of a three-dimensional structure is obtained by
means of a two-dimensional simulator, and transport is
computed through the Landauer formalism.
Gate-all-around CNT FETs have been studied instead in
[6, 7] where the three-dimensional Poisson equation has
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been reduced to two-dimensions because of the cylindrical
simmetry of the electrostatic potential.

The same coaxial geometry has been adopted in [8],
where the Poisson equation has been coupled with the
Schrodinger equation with the Non-Equilibrium Green’s
Function (NEGF) formalism, with a mode space approach,
which allows to limit the computation of transport proper-
ties to a small number of electron subbands.

However, typical experiments [9]-[10], focus on planar
gate structures which are more attractive because of their
simpler technological requirements.

To this purpose, a full three-dimensional approach has
been followed in [11], where the Poisson equation has
been solved using the method of moments. However, such
a method, while requiring the computation of the Poisson
equation only in regions where charge is not zero, has the
drawback that is practically impossible to treat more than
two different dielectric constants.

In this paper we present a three-dimensional approach,
which is based on the self-consistent solution of the Pois-
son and full band Schrédinger equations with open bound-
ary conditions, in the NEGF framework, which can deal
with very general structures, since does not take advantage
of particular symmetries, it is not limited by the number of
materials it can consider at the same time, and it can con-
sider mixed structure in which both CNTs and crystalline
semiconductors can be present simultaneously.

2. Simulation Approach

The potential profile in the three-dimensional simulation
domain obeys the Poisson equation

VI[e(®Ve(M)] = —q[p(F) —n(7) + Ny

—N;(P) + priz] (M

where ¢ is the electrostatic potential, € is the dielectric
constant, which can varies in the 3D domain, p and n are
the hole and electron densities, respectively, NV g is the
concentration of ionized donors, N  is the concentration
of ionized acceptors, and p s, is the fixed charge. Elec-
tron, hole, acceptor and donor densities are computed in
the whole domain with the semiclassical approximation,
while the electron and hole concentration in correspon-
dence of the CNT are computed solving the Schrodinger
equation with open boundary conditions.
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In particular, the Schrédinger equation has been solved by
means of the NEGF formalism [12], using a tight-binding
Hamiltonian with an atomistic (p orbitals) real space ba-
sis [13].

The Green’s function can then be expressed as

G(E)=[EI-H-%s—¥p] ", @)

where F is the energy, I the identity matrix, H the Hamil-
tonian of the CNT, while X5 and ¥, the self-energies of
the source and drain, respectively.
The considered CNTs are all zig-zag Nanotubes, but the
proposed approach can be easily generalized to armchair
nanotubes or to nanotubes with a generic chirality, since
the required changes involve only the Hamiltonian matrix.
Once the length and the chirality of the nanotube are de-
fined, the coordinates in the three-dimensional domain of
each carbon atom are computed. After that, the three-
dimensional domain is discretized so that a grid point is
defined in correspondence of each atom, while a user spec-
ified grid is defined in regions not including the CNT.
A point charge approximation is assumed, i.e. all the free
charge around each carbon atoms is condensed in the el-
ementary cell including the atom. In particular, the elec-
tron and hole densities are computed from the Density of
States (DOS), derived by the NEGF formalism. Assuming
that the chemical potential of the reservoirs are aligned at
the equilibrium with the flat Fermi level of the CNT, the
electron concentration reads
—+o0

n = / dE [DOSs(E)f(E — Ery)

+DOSp(E) f(E = Erp )], A)

while the hole concentration is

p = / | dE {DOSs(E) [1 - f(F - Fr,)

—00

+DOSp(E) [1 — f(E — Erp)l}, @

where F; is the Fermi level within the CNT, f is the
Fermi-Dirac occupation factor, and DOS g, DOSp, Ep,
and Ep,, are the Density of States and the Fermi levels of
the source and drain, respectively.

The current has been computed by means of the Landauer
formula

_ 2 [T

I=
-

dET(E) [f(E - EFS) - f(E - EFD)] )
(5)

where ¢ is the electron charge, h is Planck’s constant and
T(E) is the trace of the transmission matrix.

We have to point out that, using a real space basis, the
computed current takes into account intra- and inter-band
tunneling, since, as compared to the mode space approach,
all the bands of the nanotube are considered simultane-
ously.

From a numerical point of view, the non-linear system has
been solved with the Newton/Raphson (NR) method with
the Gummel iterative scheme.

In particular, the Schrodinger equation is solved at the be-
ginning of each NR cycle of the Poisson equation, and
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the charge density in the CNT is kept constant until the
NR cycle converges (i.e. the correction on the potential
is smaller than a predetermined value). The algorithm is
then repeated cyclically until the norm of the difference
between the potential computed at the beginning and at
the end of the NR cycle is smaller than a predetermined
value.

The Green’s function is computed by means of the Recur-
sive Green’s Function (RGF) formalism.

A particular attention must be put in the definition of the
self-energy, which can be interpreted as a boundary con-
dition of the Schrodinger equation. In particular, we have
considered two different kinds of self-energies : semi-
infinite leads boundary conditions and Schottky Barrier
boundary conditions.

The first kind of self-energy, enables to consider the CNT
as connected to infinitely long CNTs at its end. This con-
dition is particularly suitable for the study of infinitely
long CNT-FET, or more likely, to study CNT with doped
source and drain reservoirs.

Schottky Barrier (SB) is another important boundary con-
dition to be taken into account. In particular, in order
to mimic the metallic nanotube connected to the CNT in
the channel, we have anti transformed in the real space
the Hamiltonian expressed in the mode space approach in
[13], which manages to reproduce on a wide energy inter-
val, an almost constant DOS of a metallic nanotube.

We have to point out that the computation of the Self-
Energy is quite demanding. In order to achieve faster re-
sults, we have followed the approach proposed in [14],
which provides results four times faster as compared to
a simple under-relaxation method.

3. Simulation examples

In this section we show some results in order to demon-
strate that our approach can be used to study the impact
of gate geometries on very general structures, which does
not take advantage of particular symmetries. In particu-
lar, we have focused our attention on the Carbon Nan-
oTube Field Effect Transistors, in which the channel is
composed by a (7,0) zig-zag nanotube, whose diameter
is about 0.6 nm and the energy gap E,,, is approxi-
mately 1.3 eV. Such nanotube is relatively small, but nan-
otubes with even smaller diameter ((5,0) zig-zag) have
been demonstrated [15].

In particular, we will focus our attention on Schottky Bar-
rier Nanotube FET (SB CNT FET), and on CNT FET with
infinite long doped carbon nanotubes as reservoirs.

3.1 Schottky Barriers Carbon Nanotubes FETs

In Fig. 1 is shown the three-dimensional structure of the
Schottky Barrier FET. For all the simulated devices, a
Schottky barrier equal to £y, /2 has been assumed at the
source and drain terminals.

In Fig. 2, the transfer characteristics of devices embed-
ded in a SiOy layer with L=15 nm, ¢,;, = 1.7 nm, and
toz, = 50 nm (we refer from here on as single-gate struc-
ture), and with L=15 nm, {oy;, = toz, = 1.7 nm (we
refer from here on as double-gate structure) are shown for
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Figure 1: Three-dimensional structure of a Schottky Bar-
rier CNT FET).

current (A)

05 0 05
Gate Voltage (V)

Figure 2: Transfer characteristics of Schottky Barrier FET
with L=15 nm, t,,, = 1.7 nm, £,,, = 50 nm (solid line)
and toy, = tog, = 1.7 nm (dashed line) defined in a SiO2
substrate. The source-to-drain voltage is 0.3 V.

a source-to-drain voltage equal to 0.3 V. As can be seen,
as expected for such kind of devices, the ambipolar be-
havior is reproduced [2], and the I,g current is in corre-
spondence of Vg = Vpg /2. Such device exhibits a good
sub-threshold slope (78 mV/dec for the single-gate struc-
ture and 68 mV/dec for the double-gate structure), mean-
ing that gate-all-around structures are not indispensable to
achieve good voltage control over the channel.

We have to notice that, if we define the [,,, current as the
current at a gate voltage (Vzs) equal to 1.1 V, in both de-
vices, the I, /I,fy ratio is larger than 10°. This is due
to the large band gap of the considered nanotube, which
prevent a significant leakage current at the ambipolar bias
point (i.e. the point in correspondence of the minimum of
the transfer characteristic).

3.2 Carbon Nanotubes FETs with infinite long
doped carbon nanotube reservoirs

We now focus our attention on CNT FETs, whose reser-
voirs are composed by semi-infinite doped carbon nan-
otubes. In order to mimic the positive charge due to the
ionized donors, we have imposed a positive fixed charge
around the CNT so that the fraction of doping atoms on
carbon atoms is about 1072,
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Figure 3: Three-dimensional structure of a CNT FET with
doped reservoirs.

Figure 4: Electron density isosurface n = 1 x 102* m—3,

for a gate voltage equal to 0.5 V and a source-to-drain volt-
age equal to 0.3 V.

Fig. 3 shows the three-dimensional structure of the sim-
ulated devices. In order to make a comparison with the
previously considered SB CNT FETs, we have considered
the same channel length, as well as the same oxide thick-
ness for the double-gate and single-gate structures.

In Fig. 4 we show the electron density isosurface for
n = 1 x 10 m™3, for a gate voltage equal to 0.5 V
and a source-to-drain voltage equal to 0.3 V. Source and
drain region are highlighted, while the charge depletion in
correspondence of the drain end shows device saturation.
Transfer characteristics for both devices are shown in
Fig. 5. The sub-threshold slope for the single-gate device
(dashed line) is equal to 72 mV/dec, and 60 mV/dec for the
double-gate structure (solid line). As compared to the SB
CNT FET, the CNTs with doped reservoirs exhibit a bet-
ter gate control and an ideal sub-threshold slope (double-
gate structure). As expected, [11] modulating the channel
barrier is more effective in controlling the current flux, as
compared to modulating the Schottky barrier at the chan-
nel ends.

Fig. 6 shows conduction bands for both CNT FET with
Schottky barriers and doped reservoirs for both single
and double gate structures. In both cases, double-gate
structures exhibit less affection to short channel effects,
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Figure 5: Transfer characteristics for CNT with doped
source and drain regions defined in a SiO, substrate.
L=15nm, t,,, = 1.7 nm, t,y, = 50 nm (solid line) and
tox; = tow, = 1.7 nm (dashed line), while the source-to-
drain voltage is 0.3 V.
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Figure 6: Conduction bands for single and double-gate
structures as a function of the gate voltage for : a) CNT
FET with doped reservoirs ; b) SB CNT FET.

as shown by the flatter band profiles as compared to the
single-gate band profiles. In addition, double-gate struc-
tures show better control over the channel barrier, since
same gate voltage variations, produce larger channel bar-
rier lowering in double-gate than in single-gate structures.

4. Conclusions

We have developed a three-dimensional approach for
the study of carbon nanotube FETs, based on the self-
consistent solution of the 3D Poisson and Schrédinger
equations, within the NEGF framework. In particular, an
atomistic tight-binding Hamiltonian, within a real space
approach, has been used, in order to take into account
inter and intra band tunneling. As compared to others
approach present in literature, it is able to consider very
general structures, as, for example, single or double-gate
structures, which do not take advantage of particular sym-
metries, and to consider structures formed by several dif-
ferent materials.

25

channel coordinate (nm)
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