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Abstract:
We present an analytical model for silicon nanowire
and carbon nanotube transistors that allows us to seam-
less cover the whole range of transport regimes from
drift-diffusion to ballistic, taking into account the one-
dimensional electron or hole gas in the channel. We pro-
pose an analytical description of the transition from drift-
diffusion to ballistic transport based on the Büttiker ap-
proach to dissipative transport. We start from the deriva-
tion of an analytical expression for ballistic nanowire tran-
sistors and show that a generic transistor with finite scat-
tering length can be described as a chain of elementary
ballistic transistors. Then, we are able to compact the be-
havior of an arbitrary ballistic chain in a simple analytical
model, suitable for circuit simulators. In the derivation of
the model, we find a relation between the mobility and the
mean free path, that has deep consequences on the under-
standing of transport in nanoscale devices.

1. Introduction

The reduction of short-channel effects is a very important
issue in the progressive scaling of field-effect-transistors.
Multiple gate architectures such as gate-all-around (GAA)
MOSFETs are emerging as promising candidates in order
to control the short channel effects. In addition, multiple
gate architectures are expected to have improved mobility
given by the reduced surface scattering due to the lower
vertical fields and by the reduced Coulomb scattering in
the lightly doped channel.
In recent years, much attention has been placed on the an-
alytical and numerical modeling of far-from-equilibrium
transport, that is expected to be important in such de-
vice architectures, but no proposed treatment of far-from-
equilibrium transport describes the transition from drift-
diffusion to ballistic transport regime.
The aim of the present paper is the development of a com-
pact model of far-from-equilibrium transport, following
the Büttiker probes approach to inelastic scattering [1].
For such a purpose, we will use the method exposed in
[2] for planar MOSFETs.

2. Modeling nanowires and nanotubes

In the following discussion, we will consider a quantum
wire channel with generic geometry, as in Fig.1. The ef-
fective gate capacitance is: Cg = Cox ‖ Cd where Cox
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Figure 1: Schematic capacitance diagram for a wire with
square and circular section. In the square shape the inter-
face between the silicon and the insulator is considered ap-
proximately isopotential and the mobile charge layer (the
centroid) is approximated with a square contour.

is the oxide capacitance and Cd includes the effects of the
carrier centroid [3] zI . Because of quantum confinement,
we have a series of 1D subbands with associated eigen-
values in the v-th minimum: Ev

n = qφc + εv
n (n integer),

where φc is the electrostatic potential in the center of the
cross section, and the εv

n can be estimated from the well-
known analytical solution of Schröedinger equation [4], or
from numerical simulations. Well separated subbands will
be considered so that intersubband mixing is not present.

2.1 Ballistic transport: case L = λ

In the case of ballistic transport, there is no local equilib-
rium so that no quasi-Fermi level can be locally defined,
because two different carrier populations exist, originating
from source and drain, that can be considered at equilib-
rium with the injecting electrode:

Cg

(
V ′

g − φc

)
= q

∑

v,n

gv

√
2kTmv

d

2π!

[
#− 1

2

(
φc − Vs − εv

n

φt

)

+#− 1
2

(
φc − Vd − εv

n

φt

)]
(1)

where V ′
g = Vg − (φm − χ)

Notwithstanding the simple structure, the model has been
compared with a 2D Schrödinger- Poisson simulator giv-
ing a good agreement, as we can see in Fig.2, where rect-
angular confinement has been considered.
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Figure 2: Surface, central and centroid potentials obtained
a 2D Poisson-Schröedinger simulator and the centroid po-
tential obtained with the compact model for an undoped
wire with square cross section, tsi = 10nm, tox = 2nm,
zI = 2.5nm, T = 300K.

Figure 3: Ballistic nanowire transistor. Comparison be-
tween our model and the model [4].

For the current, from the Landauer formula, we have [4]:

Ids =
∑

v,n

gv
qkT

π!

[
#0

(
φc − Vs − εv

n

φt

)

− #0

(
φc − Vd − εv

n

φt

)]
(2)

where #n is the Fermi-Dirac integral of order n. It can
be interesting to compare the behavior of the proposed
ballistic model with the similar model presented in [4] in
Fig. 3, where a good agreement can be observed, but we
want remark that the proposed model has a lower compu-
tational burden, because only one transcendental equation
for the vertical electrostatics must be solved, as opposed
to the model in [4], where two equations are needed for
the vertical electrostatics. In addition, the model [4] suf-
fers of the problems characteristics of intrinsic asymmetry
between the drain and source, as we can see in Figure 4,
where the behaviors of the proposed model and the model
in [4] are compared through the Gummel symmetry test
[5], that consists in biasing the FET with −Vs = Vd = Vx,
and then varying Vx and Vg . If the model is fully sym-
metrical, as it must be from a physical point of view,
the current must satisfy: Ids(−Vx) = −Ids(Vx) and
d2Ids(Vx)

dV 2
x

∣∣∣
Vx=0

= 0.

Figure 4: Ballistic nanowire transistor. Gummel test for
the proposed model and the model [4]. tox = 1.5nm,
tsi = 3nm.
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Figure 5: (a)Chain of ballistic MOSFETs. Contacts act
as virtual reservoir. (b)Approximate aggregation of first
N − 1 ballistic transistors in an equivalent Drift-Diffusion
transistor. The global circuit can be seen as a macromodel
for a device in intermediate transport.

2.2 Drift-diffusion transport; case L >> λ

We recall that within the Büttiker probes approach, inelas-
tic scattering is localized in special points (the “virtual”
contacts) that are spaced by a “mean-free path” λ. When
carriers enter in virtual contacts, they are re-emitted with
thermal equilibrium distribution, so that current continuity
is preserved. A generic transistor can be seen as a chain
of N = L/λ ballistic transistors as shown in Fig.5(a). At
the internal contact (placed at xk = kλ, we can define the
Fermi potential Vk. Since the current in any MOSFET is
Ids, we have N +1 equations determining the local Fermi
potentials:

Ids = q
∑

v,n

gv
kT

π!

[
#0

(φc,k+ 1
2
− Vk − εv

n

φt

)
−

−#0

(
φc,k+ 1

2
− Vk+1 − εv

n

φt

)]
(3)

where k = 0, . . . , N , and we have placed for the k-th
transistor: φc,k+ 1

2
is the electrostatics potential in the peak

of the barrier, Vk and Vk+1 are the source and drain Fermi
levels respectively, therefore Vk = Vs and Vk + 1 = Vd

for k = 0 and k = N , respectively. We can show that
for N >> 1, we recover a drift-diffusion equation for
the nanowire transistor. We suppose that every ballistic
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Figure 6: Discrete quasi-Fermi potential with N = 5 at
fixed Vds = 0.5V Fermi-Levels are defined only at points
x = k × λ with k integer.tox = 2.5 nm.

transistor works in the linear region i.e. that:

Vk+1 − Vk << 2φt (4)

We can define a continuous quasi-Fermi level VFn subject
to these conditions:

VFn

(
xk+1/2

)
≡

Vk + Vk+1

2
(5)

dVFn

dx

(
xk+1/2

)
≡

Vk+1 − Vk

λ
(6)

Then, substituting (5,6) in (3), expanding in Taylor series,
truncating to the first order in λ, we have for the drift-
diffusion current:

Ids =
q2

π!

∑

v,n

gv#−1

(
φc − VFn − εv

n

φt

)
λ

dVFn

dx
(7)

where we have used the property of Fermi-Dirac
integrals: d"0(x)

dx = #−1(x)and, consistently the vertical
electrostatics (1) becomes:
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(8)
If we integrate along the channel, we obtain:

Ids =
∫ L

0
q
∑

v,n

gv
kT

π!
#−1

(
φc − VFn − εv

n

φt

)
dVFn

dx

λ

L
dx

(9)
The integral in (9) can not be placed in a simple analyt-
ical closed-form, because of the dependence of φc(Vfn)
by VFn given by (8), but can be approximated with a
simple expression adopting the symmetrical linearization
technique [5]. Indeed if we define: φcm = φcs+φcd

2 where
φcd,s are the electrostatic potential at source and drain, and
then substitute the integration variable VFn −→ φc, we
obtain:

I ' q
kT

π!
nq

λ

L

∑
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gv#−1

(
φc,m − VFn − εv

n

φt

)
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where we have defined the “quantum factor”nq:

nq ≡ 1 +
Qn

q
√
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2π!
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Figure 7: Influence of the Fermi-Dirac statistics on the
low-field mobility.

An important aspect of the expressions (7) and (8) is that
the current Iv

n in the generic subband can be written in
terms of the mobile charge density qNn and of a mobility
µdeg,n as:

Iv
n = µdeg,nqNv

n

dVFn

dx
(12)

and then we have that the generic subband contributes to
the conduction with the mobility µdeg,n that is given by:

µv
deg,n =

vthλ

2φt

#−1

(
φc−VF n−εv

n

φt

)

#− 1
2

(
φc−VF n−εv

n

φt

) (13)

where vthλ
2φt

is the non-degenerate low-field mobility of the

generic subband and vth =
√

kT
2mv

d
.

We highlight that since a constant mean free path λ is con-
sidered, (13) determines a degradation on the mobility for
high vertical biases, caused by Fermi-Dirac statistics, as
we can see in Fig.7. Indeed an analogous degradation of
the mobility caused by degeneracy has been recently ob-
served in a Monte-Carlo study [6].

2.3 Compact model for L ! λ

Now we are interested in the development of a compact
model that will be valid in the case of intermediate trans-
port. It is evident that in the general case of intermediate
transport regime, the simplifying hypothesis (4), that en-
forces each transistor of the ballistic chain to operate in
linear region, does not hold, and then we can expect that
some elementary transistor can work near or in the sat-
uration region. The behavior of a transistor operating in
such intermediate transport regime, can be obtained solv-
ing the complete ballistic chain (3). In order to build a
model that can be handled more easily, we can observe in
the example in Fig. 6 that when the saturating behavior of
the elementary ballistic transistor emerges, it manifests its
effects approximately only on the last ballistic transistor
of the chain. This fact suggests that we can aggregate the
first N − 1 ballistic transistors in an approximate equiva-
lent drift-diffusion transistor with ratio L/λ = N−1, as it
is represented in Fig.5(b), similarly to what we have seen
in [2]. Therefore we can state that a transistor in interme-
diate transport regime, that can be described by a suitable
ballistic chain, can be approximated by the DD+B series,
because it is verified the first N − 1 transistors work near
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Figure 8: Comparison of the output characteristics of the
compact model, the ballistic chain for L/λ = 5.

ds
V    [V]

0.8V

0.6V

0.4V

0.3V

0.5V

0.7V

I 
  
 [

u
A

]
d

s

−7

−6

−5

−4

−3

−2

−1

 0

−1.2 −1 −0.8 −0.6 −0.4 −0.2  0

Figure 9: Comparison between the experimental output
characteristics of a carbon nanotube transistor [7] (sym-
bols) and the compact model (solid line). T = 300K,
Cg = 500pF/m, Rs = Rd = 65kΩ, L/λ = 2..

their linear region and then they can be substituted with an
equivalent Drift-Diffusion transistor, described by (10).
A comparison between the output current characteristics
when N = 5 is provided in Fig.8, where we have also
reported the curves obtained with a DD+B model with
simplified drift-diffusion current (10), and we can see that
such model is in a good agreement with the DD+B model
with drift-diffusion current obtained by (9). Moreover, we
can verify that the series of a simple DD and a ballistic
transistor has a small error with respect the complete bal-
listic chain, given by the linearization of transport in first
N − 1 mean free paths. A corrected model is currently
under development for the degenerate case and it was ob-
tained in the non-degenerate limit [2].

2.4 Carbon nanotubes

The aboveseen compact model can be adapted to a Car-
bon Nanotube Transistors (CNTFET) with doped source
and drain, that is a promising device for the future devel-
opment of nanoelectronics.
An important issue is that the effective mass approxima-
tion is rigorously good only at low bias. Concerning quan-
tum confinement, we can adopt the approximate expres-
sion [8]:εn = ε1

6n−3−1(−1)n

4 where ε1 = .45/tcnt is the
bandgap and tcnt is the diameter of the nanotube. Here we
want to compare the model with the experimental char-
acteristics of a CNTFET [7], with tcnt = 2nm, from

which we obtain an effective mass 0.06m0. The compar-
ison is shown in Fig.9, where we have used to obtain a
good fitting two series resistances Rs = Rd = 65kΩ,
and L/λ = 2, meaning that transport is strongly quasi-
ballistic. The effective gate capacitance Cg = 500pF/m,
provided in [7], has been used. Such effective capacitance
includes the effects of the high-κ insulator and the carbon
nanowire geometry.

3. Conclusions

We have presented a physics-based macromodel that can
describe nanowire field effect transistor subject to far-
from equilibrium transport, that extends the results ob-
tained for planar transistors [2]. Starting from a model
for ballistic one-dimensional FET model, and adopting
the Büttiker probes interpretation of inelastic scattering,
we have shown that the case of intermediate transport
between fully ballistic transport and drift-diffusion trans-
port can be described by the series of an equivalent drift-
diffusion transistor with a ballistic transistor, consistently
with the results in [2]. Therefore this compact macro-
model can be considered an adequate description of trans-
port in ultrascaled nanowire FETs.
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