Universita di Pisa
] ]

The Tree Search Processor for Real-
Time Track Finding

Antonio Bardi
Dipartimento di Fisica
Universita di Pisa
Mauro Dell’Orso
Dipartimento di Fisica
Universita di Pisa

S. Galeotti

Istituto Nazionale di Fisica Nucleare,Pisa

Paola Giannetti

Istituto Nazionale di Fisica Nucleare

Giuseppe lannaccone

Dipartimento di Ingegneria dell'Informazione: Elettronica, Informatica, Telecomunicazioni,
Universita di Pisa

E. Meschi

CERN, Div. PPE,
Svizzera

F. Spinella
INFN di Pisa

A. Bardi, M. Dell'Orso, S. Galeotti, P. Giannetti, G. lannaccone, E. Meschi, F. Spinella, The tree search
processor for real-time track finding, 1998 IEEE Nuclear Science Symposium Conference Record.1998 IEEE

Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255). IEEE, Piscataway, NJ,
USA, 1998, vol.2, p.969-973.



The Tree Search Processor for Real-Time Track Finding

A. Bardi’, M. Dell’Orso’, S. Galeotti’, P. Giannetti’, G. Iannaccone’ E. Meschi’, F. Spinella’
lDipartimemo di Fisica, Universita di Pisa, Piazza Torricelli 2, 56100 Pisa, Italy
*INFN Pisa, Via Livornese 1291, 56010 S. Piero A Grado (PI), Italy
*Dipartimento di Ingegneria dell’Informazione, Universita di Pisa,Via Diotisalvi 2, 56126 Pisa, Italy
‘CERN/Div. PPE, CH-1211 Geneva, Switzerland

Abstract

We propose a dedicated parallel and pipelined hardware to
implement a binary search strategy, for real-time track finding
in high-energy physics, based on a large bank of pre-calculated
combinations of trajectory points. The bank is organized into
a hierarchical structure whose levels correspond to the pipeline
stages. Many state machines compare independent bank
sections to the event for track identification. High density
commercial RAMs store the bank; the machines are easily
packed into FPGA devices.

I. INTRODUCTION

The tree search algorithm [1] is an efficient solution to the
pattern recognition problem for real-time tracking of very high
multiplicity events in high-energy physics. It can be
efficiently executed by standard CPUs or implemented in a
parallel and pipelined dedicated hardware, the Tree Search
Processor (TSP). A first TSP prototype has been built in the
past [2], but its old architecture does not implement the
parallelism proposed here.

TSP has been proposed as a second stage of a 2-level
system [3], where the first stage is implemented by AM [4].
AM is an associative memory which performs tracking at the
detector readout rate, recognizing low-resolution tracks called
fat roads. For each event, TSP receives fat roads and high-
resolution hits and it refines the pattern recognition at the AM
output rate.

II. THE ALGORITHEM

The algorithm [1] is based on the idea of a large bank of
precalculated patterns. It solves the track finding problem in a
detector section, called fat road, consisting of a number of
layers, each layer being segmented into a number of bins.
When charged particles cross the detector they hit one bin per
layer. The problem of track finding is reduced to a search in
the bank for hit patterns matching the event. The pattern bank
can be organized into a special structure to speed up the
pattern matching process.

The basic idea is to follow a successive approximation
strategy and apply the pattern-matching algorithm to the same
event seen with increasing spatial resolution. Lower spatial
resolution is simulated by logically ORing adjacent bins.

Figure la shows how a single track, crossing four parallel
layers, is seen when each road plane is considered as being
only two bins. In this case, the total number of patterns
compatible with a straight line is eight. Pattern number 3 is

0-7803-5021-9/99/$10.00 © 1999 IEEE.

the one that matches. Since we have one track candidate at
this level of spatial resolution, we now double the number of
distinguishable bins in each plane and proceed to match the
four patterns shown in figure 1b. Pattern number 3 in figure
1a is called a parent pattern and it is said to generate the four
sub-patterns of figure 1b. Since we still have one track
candidate we go on halving the bin size. This process is
iterated until we either reach the TSP final resolution (success)
or we are left with no track candidate (failure).

e ~
- a) 4 b)\
m:*
N
— = === == = ==
= 2 L=l . "
[ —1 4=—
G 6 7 8 j& )

Figure 1: (a) Eight patterns are compatible with a straight line when
each layer is divided in two bins. Pattern number 3 is the one that
matches. A straight line is used for sake of simplicity; other line
shapes would require different patterns. (b) We double the number of
distinguishable bins in each plane and proceed to test the four sub-
patterns of the matching pattern.

The pattern bank can thus be arranged in a tree structure
(figure 2a): increasing depth corresponds to increasing spatial
resolution. The tree root corresponds to the incoming fat road
at lowest resolution. Each node represents one pattern and is
linked to the sub-patterns (pattern block) generated when the
spatial resolution is improved by a factor two. We scan the
pattern block (block test) and every pattern matching the event
is a track candidate that enables the search at the next level. A
refined track candidate (thin road) is found whenever the tree
bottom is reached. If TSP reaches the detector intrinsic
resolution, the pattern recognition is complete; otherwise, the
few remaining hit ambiguities are resolved by a further
processor, which fits the residual combinations.

This tree-search is obviously much faster than a purely
sequential search. The average number of patterns one has to
examine to find a single track [1] is proportional to the total
number of levels in the tree and to the average number of
patterns in a pattern block.

If more than one track is inside the fat road, the number of
visited nodes during the tree search increases more than

969



linearly [1], since many fake matches can occur at low
resolution.

, Yo
a) ) FAT ROADS ,poavor
MATCHING
PATTERN MACHINES
BLOCK
MATCHING
PATTERN
§ ROADS
. J

Figure 2: (a) Hierarchical pattern organization in a tree structure. (b)
Parallel architecture of machines distributed in pipeline stages
corresponding to the tree levels.

1. THE TSP ARCHITECTURE

The tree search algorithm can be easily implemented on a
parallel architecture, because different patterns can be
compared independently to the event data. Moreover, the tree
search can be pipelined, since all tests of one level must be
executed after the tests of the previous level. It is possible to
reach a high degree of parallelism if we assign several simple
machines to the parallel execution of the block tests of each
level in the tree. Figure 2b shows an architecture where the
machines are distributed in pipeline stages separated by
derandomizing FIFO memories.

At level-0, each incoming fat road requires the execution of
a single block test assigned to a single matching machine
(represented by a gray rectangle in figure 2b). The block test
at level-0 generates a variable number of matches,
corresponding to as many block tests to be executed at level-1.
For each level-0 match, the information necessary to process
the corresponding pattern block at level-1 is put in the FIFO
memory between the two levels. From there, the information
is fetched and assigned to a level-1 machine. The process,
started by an input fat road, is repeated at every level until
exhaustion of all matching nodes. Each road, after level-0,
fragments into independent pieces through different tree
branches.

The pipeline of figure 2b can handle many roads at the
same time. When a new fat road arrives to the TSP, its full
resolution hits are distributed in parallel to all the matching
machines in the system. The machines have buffers to store
hits from different fat roads. This allows any machine to start
working on any road at any time.

Fragments belonging to different roads can mix and pass
each other along the tree. On the contrary, different events
flow in the pipeline keeping the order they entered the TSP. A

certain pipeline stage does not process any road fragment
belonging to a new event, while fragments of a previous event
are still under examination in the same stage.

For an efficient use of the computing power, the number of
machines on each stage and the number of buffers per machine
must be optimized to match the rates of consecutive stages.
To this purpose, the number of machines on a level must be
proportional to the average number of matches occurring at
that level. Since the number of matches at each level does not
grow too rapidly with track multiplicity [1], the number of
machines can be reasonably small.

A. Pipeline Stage

Descending one level in the tree structure, the effective
spatial resolution increases by a factor two. This means that
each bin is split in two halves (figure 1). Starting from a given
node, each branch is identified by one bit per layer, which
distinguishes the two half-bins: “zero” indicates the right
section and “one” indicates the left section. This set of bits is
referred to as the branch.

When examining one specific sub-pattern during a block
test, a branch is called the current branch. A node, with its
hanging block, is identified by all the branches linking it to the
root. They are called the parent branches.

UP-FIFO

PBADD PB RB

~

/| LaB y y

AB

WB )

DOWN-FIFO

PBADD PB RB

Figure 3: Pipeline stage between the UP and the DOWN FIFOs. The
matching machines are represented by gray boxes.

Figure 3 shows the internal organization of one pipeline
stage in the TSP. Each machine, represented by a gray
rectangle, is equipped with the match logic described in
subsection D. Information on the block test to be executed is
stored in the up-FIFO: one word per block test. A Level
CoNTroller (LCNT) pops the FIFO and assigns the block test
to a free machine, which tests one pattern per clock cycle.
Hence, the machines are efficiently fed only if their number
does not exceed the average number of patterns in a block.
Beyond this limit, the FIFO bandwidth is saturated and

970



machine dead time can be avoided only by improving the
communication between consecutive levels.

The information stored in each FIFO word consists of three
parts:

1. RB field.

Each matching machine uses private RAMs to implement
several Road Buffers (RB). When the TSP receives a fat
road with full resolution hits, the hits are sent in parallel
and stored into one RB for each matching machine, with
the resolution appropriate to the level the machine belongs
to. Multiple buffers allow simultaneous memory of
multiple roads. For a given input road, the buffer ID is
unique and the same for all the machines in the system.
During a block test, a machine compares a number of
patterns to the hits stored in the buffer identified by the
RB bit field.

2. PB field.
The Parent Branch (PB) bit field describes the parent
branches from the tree root to the current level. At tree
level n, it consists of n bits per detector layer. The parent
branches are common to all nodes in the pattern block
under test. Patterns in the same block differ from one
another because of the current branches.

3. PBADD field.

The current branches of a given level are stored in a local
high-density memory called Level’s Pattern Bank (LPB),
which serves all the machines in the same level. The
pointer to this bank is in the PBADD bit field. If
necessary, optimization of data storage can be achieved by
addressing the LPB though a look-up table, the Level’s
Address Bank (LAB). PBADD consists of the address to
the LPB of the previous level extended by few bits
indicating which branch matched at that level. Of course,
this information uniquely identifies the pattern block and
the address to the LPB of the current level.

For each match, the matching machine holds the RB, PB,
and PBADD fields for the next level, until the level controller
pushes them in the down-FIFO. End event and start event
words separate different events. These words are propagated
down the pipeline through the FIFOs and used by the level
controller to keep the correct event sequence: words of one
event are pushed in the down-FIFO only after the words of the
previous event.

B. Pattern Bank

In the TSP, there is no central memory containing all
patterns.  Rather, the pattern bank is delocalized on the
different pipeline stages. Every LPB contains only the
branches concerning its own level. The complete patterns of a
given level can be resurrected only by properly combining the
data stored in the LPBs of this and of all higher levels up to the
root.

The LPB can be organized under the constraint that all data
for a block test must be transferred to the matching machine in
one clock cycle. If the TSP works for an n-layer road, a
branch is an n-bit word. Therefore, a pattern block is
identified by a subset of 2" potential current branches. For
instance, LPB could store 2%-bit words, with each bit

971

associated to one possible current branch: a value of “one”
would indicate that the corresponding branch is actually
consistent with a track candidate.

From the current branches of the LPB-word and from the
parent branches of the up-FIFO PB-field, the matching
machine decodes the patterns to be compared to the event
stored earlier in a RB.

C. Tree Controller

ROAD + HITs
HITs | ROAD
[PBADD| RB H lIP‘EE CNT '
T

Y-

LonT AR
WB |
LEVEL1A

v
[PBADD| PB | RB ]

Figure 4: Tree controller and level controllers.

Figure 4 shows the level controllers and the tree controller.
The tree controller is dedicated to broadcast the hits of
incoming roads and to maintain a free buffer queue for the
RBs. For each road received by the TSP an RB number is
allocated to the road and a mechanism is necessary to free the
buffer number upon completion of the road analysis.

To this purpose, every pipeline stage is equipped with two
up-down counters for each RB: the Active-Block counter (AB)
and the Waiting-Block counter (WB). For a given road buffer,
AB monitors the number of blocks currently under test on the
matching machines. As for WB, it monitors the number of
blocks currently waiting in the down-FIFO. Each time a block
is popped out of the up-FIFO, the level controller sends an up-
pulse to the AB of its level and a down-pulse to the WB of the
previous level. Each time the blocks generated by a matching
machine are pushed in the down-FIFO, the level controller
sends a down-pulse to the AB of its level and an up-pulse to
the WB of the same level. The road analysis is complete when
the counters of the corresponding road buffer reach zero on all
levels. The tree controller watches all the counters and, upon



completion of a road analysis, it clears the RBs used at any
level and it frees the buffer number in the buffer queue.

D. Match Logic

As explained, at any level of resolution the patterns consist
of one bin per detector layer. The comparison of a pattern to
the event is performed by independent logic circuits, which
test in parallel the pattern bins on different layers.

~N" -~
15 10 0 WRITE
NEEEE ENNERNEREE
PAT=1010 (binary) RESET-ROAD
DN 2X1 LEVEL 0
e RAM__ | maToH |
EE [TTTTTIT] | LOPAT3 {00 wn
PAT3=1 LEVELO
PAT3=1 HITI3:2] R WATCH
PAT2=0 LEVEL1 11 1PaTi32] ],_,"’1_ ADD >
a WR
| I
L ]
LEVEL 2 | HITI3-1] on 8X1 | Loz
L2PAT[3-1] | _} 2 oo
| WR
- J_g ] 16X1 LEVEL 3
=1 - OIN
PATocg EVEL3 [HITIZO) 9™ RAM|_| maten |
- L3PAT[3-0] AOD
PAT1=1 il -
PATO=0 [
RESET-ADD —
q a)l ! b) )

Figure 5: a) A pattern bin and its binary code at different levels of
resolution, in a 16-bin layer. b) The match logic of a single layer
implemented at different pipeline stages.

As an example, figure 5b shows how the matching circuits
for one layer appear at each pipeline stage, for the case of 16-
bin fat roads. At level n, counting from zero, the basic
element is a 1-bit wide RAM with 2™ locations. These
locations are in one-to-one correspondence with the layer bins
at that level of resolution. By storing a logical “one” in every
location corresponding to a hit bin, the RAM can be
downloaded with a “snapshot” of the detector layer at the
resolution appropriate to the level. To this purpose, when the
TSP receives the road hits, the RAMs have all the data inputs
set to “one” with the address lines driven by the HIT bus.
Each layer hit received by the TSP is presented on the HIT bus
while a write cycle is performed on the RAMs. For 16-bin fat
roads, the HIT bus is 4-bit wide: HIT[3-0]. The logical OR of
adjacent bins to meet the resolution at level-n is achieved by
addressing the RAMs with the n+1 most significant HIT bits,
e.g. HIT[3-2] at level-1. The RAMs implement the road
buffers.

During the pattern comparison, the RAMs are used in read
mode and addressed by the PATtern bus (PAT). Figure 5a
shows how the most significant PAT bits identify one pattern
bin with the resolution appropriate to the level. This is done in
the same way the most significant HIT bits identify a hit bin
during data writing. Each time the PAT bus addresses a RAM
location corresponding to a hit bin, the match is flagged by
reading out a logical “one” (layer match). The n+1 PAT bits

used at level-n are generated in the following way. The n most
significant bits come from the up-FIFO PB-field and identify
the parent branches, while the remaining bit is decoded from
the level’s pattern bank and identifies the current branch.

The layer matches are monitored by a look-up table for
global pattern match. The use of a look-up table allows
implementation of any criteria, such as a majority logic that
accounts for detector inefficiencies on some layers. In case of
pattern match, the PAT bits used at a given level are put in the
PB-field of the down-FIFO and passed to the next level.

When the road analysis ends, all RAMs are addressed by
the RESET-ADD bus and cleared by cycling through every
memory location.

Field programmable gate arrays, containing many small
RAMs among their basic building blocks, are an ideal support
for implementing the TSP match logic.

E. TSP Output

HITs

FAT ROADs

HITs

FRB N

THIN
ROAD
HITs

RB + PB

—

v

Figure 6: TSP output. The thin road is identified by the PBADD-
field. The hits are retrieved from the FRB identified by the RB-field,
at the address indicated by the PB-field.

Figure 6 shows a sketch of the TSP output. For each
pattern match at the bottom level, TSP outputs the found thin
road, which is identified by the PBADD-field in the last FIFO.
In addition, TSP must also output the full resolution hits
belonging to the thin road, for further processing. These tasks
are performed by an output stage.

The output stage is provided with Full resolution Road
Buffers (FRB). FRBs are numbered as the RBs of the standard
pipeline stages and are subject to the same free buffer queue.

972



As the RBs, the FRBs are downloaded with full resolution hits
when TSP receives the data. Unlike the RBs, which are 1-bit
wide, the FRBs are RAMs wide enough to store all the hit bits,
saving address space with respect to the RBs.

If TSP is designed to stop before reaching the full detector
resolution, each thin road bin may contain multiple hits.
Storing full resolution hits, and retrieving those belonging to a
found road, is the function executed by the Hit Buffer [5] of
the Silicon Vertex Tracker, in the Collider Detector at
Fermilab. It is implemented in the same way by the TSP
output stage. A great simplification comes from the fact that
the FRBs must store only the hits of fat roads, while the Hit
Buffer stores all hits of the entire detector. Essentially, the
FRB addresses are grouped in sections; each section is
dedicated to a single bin. When a thin road is found, its bins
indicate which FRB sections must be read to fetch out the hits.
The RB-field of the last pipeline FIFO gives the FRB ID,
while the PB-field gives the road bins and, hence, the FRB
sections.

IV. CONCLUSIONS

A powerful dedicated hardware is proposed for execution
of a general algorithm based on a binary search strategy.
Although developed for on-line trackers of high-energy

physics, the device can be used in different applications where
a large bank of patterns must be searched. The advantages in
terms of speed come from the chosen search strategy, the
strong parallelism, and the pipeline structure of the hardware.

V. REFERENCES

[1] M. Dell’'Orso and L. Ristori, "A highly parallel algorithm
for track finding", Nucl. Intsr. and Meth., vol. A287, pp.
436-440, 1990.

P. Battaiotto et al., "The Tree-Search Processor for Real
Time Track Pattern Recognition", Nucl. Intsr. and Meth.,
vol. A287, pp. 431-435, 1990.

P. Battaiotto et al., "A Fast Track Finder for Triggering
Applications in High Energy Physics", Nucl. Intsr. and
Meth., vol. A293, pp. 531-536, 1990.

M. Dell'Orso and L. Ristori, "VLSI structures for track
finding", Nucl. Intsr. and Meth., vol. A278, pp. 436-440,
1989.

S. Belforte et al., "The SVT Hit Buffer", IEEE Trans. on
Nucl. Sci., vol. 43, pp. 1810-1813, 1996.

(2]

3]

(4]

(5]

973



