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Abstract Tri-gate

Double-gate and tni-gate FinFET type memories with nitride Nanoc rytI~
(SONOS-like) or Si nanocrystals storage with minimum
feature sizes of 10 nm were realized. Strong performance
advantages in program / erase characteristics and reliability
deeply linked to the FinFET architecture are demonstrated.

Introduction

Memories with discrete storage media like nanocrystals or
nitride are a promising alternative to floating gate (FG)
devices given the improved resistance to SILC defects and
reduced parasitic capacitive couplings due to the FG [1].
Moreover, the combination to a FinFET architecture allowxide DeviceTealizatiadvantages in terms of suppression of short channel effects F

Finwfh t t hbFINFLASH devices with nanocrystals (a, b) and nitride
[2]. Inthis pperweshow fr the frst tie thatthe dobleor(c, d) trapping media. (a-c) are sections orthogonal to

tni-gate structures allow a large improvement in terms of VT the fin, (d) is along the channel length.
window, justified by the distribution of the electric field in
the gate dielectric stack. This allows to increase tunnel oxide Device realization
thickness with a resulting better retention.

FinFLASH devices were realized on SOI wafers by DUV
Double gate lithography, except for the shortest devices in which both fin

and gate mask were realized by e-beam lithography. Tri-gate
and double gate structures were realized with both Si
nanocrystals and silicon nitride layers as trapping media.
Tunnel oxides were in the range from 3 to 6 nm. In nitride
memories (SONOS-type) control dielectrics were HTO layers
of thicknesses from 5 to 8 nm, while in nanocrystal devices
ONO stacks ofEOT from 10 to 15 nm were used.

Results and Discussion

Figs. 1 and 2 show TEM and SEM micrographs of the double
10 ~~~~~~~~~~~gateand tni-gate devices structures, respectively. Channel

lengths (LCH) and widths (W) as narrow as 30 nm and 10 nm
Fig. 1. TEM and SEM micrographs in plan (a) or in were realized (Fig. 2). These devices show regions with high
cross-sectional view of the Fin (b-d) of double-gate curvature in the dielectrics, in correspondence with the fin
FINFLASH devices with nanocrystals (c) and nitride
(d) trapping media. corners.

A. Improvements on Short Channel Effects (SCE)

Though the overall thickness of the dielectric stack, including
tunnel and control oxide and trapping medium is above 15

1-4244-0439-X/07/$25.00 © 2007 IEEE 921



nm these devices show excellent performances in terms of important feature since the erase saturation phenomenon in
SCEs. Subthreshold slopes recorded at VDS = 1 V (Fig. 3) and SONOS forces the use of reduced tunnel oxide thickness,
DIBL resistance (Fig. 4) remain remarkable even for very with an associated retention limit at high temperature. This
short channel lengths and improve as the fin height or width has been a strong motivation to the development of
are decreased. The ON current measured at VG-VT = 1.5 V innovative concepts such as the NROM and the TANOS.
and VDS = 1 V (Fig. 5) are above 20 tA, largely exceeding
the values of conventional Flash devices. Tri-gate devices can 10
further improve ION, though this advantage is larger for (a) Double gate
higher widths. H,,=20nm H,,=40nm
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Concerning ~ ~thenprogramn Figtoasas/Ehaatrstchs

(0 ,W=40nm Fig4. measured with VDs from 0.1
V 1oI V =.I1ces 3 a function of channel length in double and tn-gate10110 f FCINFLASH devices. As the W or the fin height decreaseCanllength (nm) the DIBL improves dramatically, well above the values

achievable in standard planar Flash devices.
Fig. 3. SubthrEshold slope measured at VDS 1 V as a
function of channel length in double and tnc-gate
FINFLASH devices, in all cases with overall tr
dielectric stack thickness above 15 nm. As the W or the 0 .t
fin height decrease, the slope improves well above the TteV Double gate

values achievable in standard planar Flash devices. In is4an
160-C W=20nmI IW=4OnmI--0W=49nm 2

(b) fin heights range from 25 to 60 iim. 60 IIW=30nmI VI-=6OnmI-r-W=6OnmI

IFW=80nm t>L~nJ.=O~In double- and tni-gate FINFLASH structures the current in
40 L0~

inversion is accumulated in correspondence to the fin corners, z1
as evidenced by TCAD simulations, as in the example of Fig.
6. This explains why ION does not depend on fin height in 20-
double gate devices (Fig. 5).

B. Program/ Erase Characteristics 101 10210
Channel length (nm)

Concerning the program / erase (P / B) characteristics these
Fg .O urn esrda n GV

devices exhibit excellent performances. Fig. 7 shows the 1.5 V as a function of channel length in double-gate and
curves of CHB programming and FN tunneling erase, both tn'-gate FTINFLASH devices. In double-gate devices ION
very efficient at remarkably low gate and drain voltage. Note is almost independent on fin height, indicating that the
the ability of CHB programming by using "warm carriers" at inversion charge is accumulated at the fin corners, as

value lowethan3.2 V consstentwith 3]. Fg. 8 howsconfirmed by TCAD simulations. hi small W tni-gateVD devices the behavior is similar thoughithrION,Fcontrarilyto-



between the silicon fin and the tunnel oxide. Data are
0.25 edge curvature obtained from an analytical model, considering a charge-

radius
Fresh ~~~5nm neutral nitride layer with 3 nm tunnel oxide, 5 nm nitridecd 020 Programmed ~~layer, 5 nm control oxide and confirmed by TCAD

Fn 0.15 ~~~~~~~~~simulations. As can be seen, there is an effective field
U) ~ ~~~~~~~tpenhancement in the tunnel oxide, and a field suppression in

the control oxide, whose strength increases with edge
curvature. The high field in the part closer to the channel

o ~~~~~~~~~~~~~impliesefficient programming and erase at the fin corners,
0.00 ~~~~~~~0- ~~~while the much lower field at the top part implies suppression

0 10o2 30 40 50 60 70 fifl cross section of the electron back-injection from the gate. These
Curvilinear coordinate (nm) circumstances can explain the impressive P / B efficiency of

Fig. 6. Simulated current density in a tni-gate structure the FinFLASH structures and the particularly good
in the central cross section as a function of the robustness to erase saturation.
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FINFLASH cells as the one of Fig. 8. VT window of
Fig. 8. Program / erase curves by FN tunneling in a about 3 V extrapolated at ten years at 250 0C are

SONOS-type F1INFLASH cell with an ONO of 4.5 nm observed for the first time in this type of devices.
bottom oxide, 3.2 nm nitride, and 8 nm top oxide
thickness. Erase saturation takes place only at very high
(in absolute value) voltages, indicating a very effective C. Retention and Cycling
suppression of electron back-injecction from the gate.

This P / B characteristics are coupled with excellent

A possible explanation for this large improvement is the performances for retention at high temperature, showing
following: Fig. 9 shows calculations of the electric field reliability well in excess of ten years at temperatures as high
distribution in the gate stack under erase conditions. In as 250 'C (Fig. 10), with extrapolated residual window of
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Fig. It. EN P / E cycling of a SONOS type FINFLASH Fig. 13. EN P / E cycling of a nanocrystal FIINFLASH cell
cell as those of Figs. 8 and 10. Programming and erase with tunnel oxide of 4 unm and ONO of 4.5/5/9.5 nm.
are obtained at VG ±16 V t 10 ms and VG -15 V Programming and erase are obtained at VG0 ±18 V
t 10 ms, respectively. t 100 ts and V0, -18 V t = 10 ms, respectively

Summary
-0.005
-0.010 :-0.015 L

In summary, we show for the first time that in addition to the
-00250
-0.030 <'\\\< advantages of suppression of SCEs, the FINFLASH
-0035 SO S-0.040 SONOS architecture allows to dramatically improve the VT window
-0.045 (up to 8 V with lE5 cycles) and the erase saturation problem,

NC'»
-00650 allowing thicker tunnel oxides with associated excellent
-0.070 retention, demonstrated up to 250 'C.
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