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Abstract. We study, by means of numerical and analytical quantum mechanical calcinations, shot 
noise suppression in a series of tunnel barriers, finding results that strongly differ from the 1/3 limit 
for the Fano factor that woidd be expected from semiclassical models. The reason for the observed 
residts is attributed to the presence of strong localization, which in the case of just one-dimensional 
disorder makes it impossible to reach the diffusive transport regime. 
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INTRODUCTION 

It is well known [1] that shot noise in diffusive conductors is suppressed, with respect 
to the value expected from Schotfliy's theorem, by a factor 1/3. De Jong and Beenakker 
[2, 3] showed that the same value for the shot noise suppression factor (Fano factor) 
is obtained for a series of tunnel barriers, using a semiclassical model based on the 
Boltzmann-Langevin equation. Here we show, by means of numerical and analytical 
calculations, that a quantum mechanical model yields different results and, in particular, 
the asymptotic 1/3 limit is not achieved, and we propose an explanation for these results. 

NUMERICAL RESULTS 

We focus on the case of unevenly spaced barriers (see Fig. 1(a)), i.e. of one-dimensional 
disorder, where (differently from the case of equidistant barriers) the transport behavior 
is not dominated by resonances between the interbarrier regions. As a result of the 
absence of mode-mixing in this structure, transport along the propagation direction x can 
be analyzed studying separately each propagating mode. We have therefore evaluated the 
transmission T„ of the generical w-th mode through the device, with the scattering matrix 
formalism. Then we have computed the conductance G, the shot noise power spectral 
density S; and the Fano factor y as [4, 5] 

(q is the value of the elementary charge, h is Planck's constant, / is the average current 
flowing through the device and V is the extemaUy apphed voltage). The considered 
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FIGURE 1. (a) Sketch of the considered stracture. (b) Fano factor (averaged over 50 sets of interbarrier 
distances) for a series of ideal barriers, represented for three values of the transparency F. The empty 
symbols represent the numerical residts, while the solid symbols come from the analytical calculation. 

Structures have a confinement width W of the order of some microns. In particular the 
values of the Fano factor and of the resistance that we show in the following have been 
obtained for W = 8 jum, with a Fermi energy of 9.03 meV, which corresponds to 320 
modes propagating in the structure; the results are properly averaged over a range of 
energy qV = 40 jUeV. In order to smooth out the fluctuations resulting from interference 
effects, we have averaged the results obtained from 50 different sets of interbarrier 
distances. 
In Fig. 1(b) we show, as a function of the number of cascaded barriers, the values of 
the Fano factor achieved for three barrier transparencies, assumed to be independent 
of the longitudinal wave vector of the impinging electrons. It is apparent that these 
results (which are very close to those we have obtained with an exact description of 
the tunnel barriers) do not approach, increasing the number of barriers, the common 1/3 
limit expected from semiclassical arguments. 

STRONG LOCALIZATION 

Indeed, due to the presence of just 1-D disorder, and consequently to the absence of 
mode-mixing, in this structure the transport problem is equivalent to a collection of in
trinsically one-dimensional problems. Therefore, the locahzation length L/ is equal to 
the mean free path LQ and it is impossible to satisfy the condition for diffusive transport 
(Lo « Ld « Li, with Ld being the length of the device). The presence of localization 
in the considered structure is confirmed by the exponential behavior of the resistance, 
as a function of the number of barriers, obtained from our numerical calculations (see 
Fig. 2(a), where we have considered ideal barriers and averaged over 50 different inter
barrier length sets). This is evident for opaque barriers, but also the nearly linear behavior 
observed for a series of highly transparent barriers actually represents a slowly exponen
tial increase. Thus locahzation, which does not appear in common semiclassical models 
(not including phase coherence), does appear in quantum mechanical approaches and 
represents the key difference between the two types of theoretical analysis. In the ab-
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FIGURE 2. (a) Resistance (normalized with respect to the resistance quantum 12906.4 Q.) of a series 
of ideal barriers with F = 0.1 and 0.9, as a function of the number of barriers, (b) Distribution of the 
occupancy for the propagating modes in the 3rd interbarrier region of a series of six unequally spaced 
tunnel barriers with F = 0.1. 

sence of a hypothetic mechanism leading to complete dephasing, the diffusive behavior 
can be recovered for a series of barriers only if strong mode-mixing is introduced in the 
structure, the number Â  of propagating modes is large, and the length of the device is 
such that the condition LQ < < L^ < < L/ (with L/ = A^LQ) is satisfied. 
The absence of mode-mixing makes it impossible also to define an occupancy depending 
only on energy in each interbarrier region, while this is one of the main assumptions 
that need to be made in semiclassical derivations. As an example, we have computed 
the occupancy of each propagating mode in the 3rd interbarrier region of a series of 6 
unequally spaced barriers with an average transparency 0.1. This has been achieved for 
each mode dividing the partial density of states due to injection from the left lead by 
the total density of states. The distribution of the occupancies is shown in Fig. 2(b); the 
dispersion of these values demonstrates that it is impossible to define a unique value for 
the occupancy in the interbarrier region. 

ANALYTICAL CALCULATIONS 

Assuming ideal barriers with a transparency independent of the longitudinal wave vector 
of the impinging electrons, it has then been possible to find closed-form expressions for 
the Fano factor of the series of 2 and 3 tunnel barriers, as a function of their transparency. 
Indeed, from our simulations we have seen that the value of the overall transmission of 
the device (which appears at the denominator of 7 in Eq. 1) is approximately identical 
in structures differing for the values of the interbarrier distances, due to the high number 
of propagating modes and to their averaging effect on transmission. Therefore it is 
reasonable, for this device, to separately average the numerator and the denominator 
of the Fano factor (over different sets of interbarrier distances), instead of averaging the 
values of the Fano factor for the different length sets. Therefore the mean Fano factor can 
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be approximately expressed as 7 = ( I„7; ( l - T„))/{1„T„) = 1,„{{T„) - {T^))/'Ln{Tn) 
(where the average is over sets of interbarrier distances). But, if the results are averaged 
over several sets of random interbarrier distances and the transparency of the barriers 
is identical for all the propagating modes, there is no dependence of the results on 
the longitudinal wave vector of the mode and therefore each mode gives the same 
contribution to the calculation. Therefore, dividing out the number of modes in the 
ratio, we have that 7 = {{T) — {T^))/{T), where each average is performed only on 
a single generical mode and depends only on the transparency T and on the number of 
the considered barriers. In particular, for each number of barriers, we have found, using 
the scattering matrix method, the expression of T and T^ as a function of the phase 
contributions resulting from the traversal of each interbarrier region. Then we have 
averaged these two expressions over all possible values of the interbarrier distances, 
integrating each phase contribution between 0 and In. Following this procedure, we 
have obtained closed-form expressions for two and three cascaded barriers. If T is the 
barrier transparency, for a series of two barriers we have 

r , r(2-2r+r2) , , , (T^) 2(1-r) ,̂ , 
T^) = ^ .̂  7, ' and thus 7 = 1 - V T ^ = .) ' , (2) \ / 2 - r ' ^ ' ( 2 - r ) 3 ' (T) ( 2 - r ) 2 ' 

and, for a series of three barriers, 

T) = , , r2 = ^ 
v/r(4-3r)' v^r(4-3r)(i6-24r+9r2) 

, (r2) 3(4-8r+5r2-r3) 
and thus 7 = 1 - V T ^ = ,^ 7,^ ^^, ' . (3) 

' (T) 1 6 - 2 4 r + 9r2 
This is coherent with our numerical results, as can be seen in Fig. 1(b), where the 
analytical results are shown with solid symbols. The first value is also equal to the one 
predicted semiclassically [2, 3]. Actually, for only 2 barriers a uniform occupancy in the 
middle region can be defined, with a value equal to the average between the occupancies 
in the input and output leads. In this special case, the phase averaging procedure is 
equivalent to the effect of a completely dephasing mechanism [6] and therefore the 
semiclassical results are recovered. However, already in the case of 3 barriers, results 
differ from the semiclassical ones [2, 3], as a consequence of locahzation. 
Our results could be useful for the further investigation of experimental data obtained 
for superlattices [7], which do significantly differ from the expected 1/3 limit. 
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