
Università di Pisa

!"#$%&'() #") *$++$,,-+&() !" #$%&'()*" +,(&%$)-" %$)" .(.$#/(,*" 0*12/*" #2-3,(&2$." (.0" 12#3(,24(&2$. ()
./0$+,&1) 2+) 3-4567$72-+$8) 9--81) :-') ;+<2+&&'2+<) .5582,$72-+1() =>>?") *+7&'+$72-+$8) 3-+:&'&+,&) -+)
.39;.)@>?()55")AB=)C)ABDE=>>?F")
)

!"#$%&'()*"+,(&%$)-"%$)".(.$#/(,*"
0*12/*"#2-3,(&2$."(.0"12#3(,24(&2$.

!"#$%&'"($#&
G&5$'74&+7)-:);+<2+&&'2+<)3%H&'+&72,1()I-'J&<2$+)

K+20&'127%)-:)L,2&+,&)$+/)9&,M+-8-<%)EI9IKF()9'-+/M&24)

')*+$,,$&-".."//0.$&
G25$'724&+7-)/2)*+<&<+&'2$)/&88@*+:-'4$N2-+&O);8&77'-+2,$()*+:-'4$72,$()9&8&,-46+2,$N2-+2()

K+20&'127P)/2)Q21$)

A Software Platform for Nanoscale Device Simulation and Visualization

Marek Gayer and Giuseppe Iannaccone

Abstract— NanoFEM platform is a new research environment

based on the finite element method (FEM) for Technology

CAD (TCAD) simulation and visualization of nanoscale devices,

such as MOSFET transistors. The simulation in NanoFEM

platform is based on solving partial differential equations

corresponding to physical processes in modelled devices. A

user or developer can provide these equations in a variational

form format, and can define solver modules based on a FEM

library with ability of automatic generation of finite elements

and finite element forms. Solver modules can define fields

for simulation and visualization and boundary conditions.

Simple boundary conditions and material properties can also

be specified directly in the graphical user interface. Geometry

for the solved case can be defined either in graphical user

interface or using Python scripting. Quality tetrahedral meshes

necessary for FEM simulations are generated automatically.

Visualization and post-processing is available in graphical user

interface. We present some of related major existing solu-

tions, namely open source geometry editors, mesh generators,

computation libraries and visualization tools for FEM. We

discuss major software components of the NanoFEM platform,

i.e. Salome Platform and DOLFIN/FEniCS. We present an

example simulation and visualization in NanoFEM platform.

This is a simulation of the Poisson’s equation on a 3D structure

consisting of several geometry groups and materials forming

a FinFET transistor with a mesh consisting of hundreds of

thousands tetrahedrons. Because NanoFEM platform consists

almost entirely of open source software components, others

could eventually build similar solutions including, but not

limited to TCAD device simulations after reading and reviewing

the NanoFEM platform design and components.

I. INTRODUCTION
A. Motivation

Semiconductor Technology CAD (TCAD)1 has reached
such a level of complexity that only extremely specialized
engineers and physicists can use it to extract information
relevant for technology development. Such consideration
suggests that the typical business model of TCAD, based on
software companies that develop the codes and sell licenses
and support, has become inefficient and very costly for
customers. In the medium term, the situation can worsen,
since codes will become largely more complex, as devices
enter the nanometer scale.

We have decided to design and implement a new scientific
research platform for providing 3D modelling environment

This work was carried out during the tenure of an ERCIM "Alain
Bensoussan" Fellowship Programme.

M. Gayer is with Department of Engineering Cybernetics, Norwegian
University of Science and Technology (NTNU), Bragstads plass 2d, N-7491
Trondheim, Norway marek.gayer@itk.ntnu.no

G. Iannaccone is with Information Engineering Department,
University of Pisa, Via Caruso 16, I-56126 Pisa, Italy
giuseppe.iannaccone@iet.unipi.it

1http://en.wikipedia.org/wiki/Technology_CAD

for Technology CAD (TCAD) simulations of nanoscale
devices, such as MOSFET2 transistors, based on the finite
element method (FEM)3. However, our proposal might be
interesting for other researchers, who effort to design and
implement general simulation frameworks and projects based
on the finite element method.

B. Finite Element Method

The finite element method is currently one of most often
used techniques for numerical solutions of partial differential
equations on complex modelled domains. Finite element
method has become a defacto industry standard for solving
wide variety of multi-disciplinary engineering problems.
There are many applications using this method, such as
solid mechanics, fluid mechanics, heat transfer, acoustics,
electromagnetics and computational fluid dynamics.

For numerical computation using the finite element
method on general 3D modelled objects, we need to provide
a suitable mesh representation of the continuum. This means
to find a suitable discretization of continuous domain to sim-
ple volume cell elements (e.g. triangles, tetrahedrons). In the
cells, partial differential equations (PDE’s) can be replaced
by systems of non-linear algebraic equations. Using the finite
element basis, discrete algebraic systems are assemblied into
sparse matrices and then solved. Computed characteristics
are determined in the nodes of the elements.

Computation of general partial differential equations using
the finite element method is rather complex to design and im-
plement, and solid understanding of mathematics, numerical
methods and computer engineering is required for designing
and implementing new performance optimal solutions of real
problems based on this method.

One of important advantages of FEM is availability of
software tools, pre- and post-processors as well as software
components based on this method. This allows for instance
to automatically generate meshes on arbitrary structures, and
there are some good open source meshers for FEM. The wide
availability of such tools suggests that the finite element
method is in practice considerably more often used then
similar methods, such as e.g. finite volume method.

II. RELATED SOLUTIONS

There are available several commercial and academic so-
lutions and tools for TCAD simulation and modelling includ-
ing: Crosslight Software (APSYS, LASTIP and PICS3D)4;

2http://en.wikipedia.org/wiki/MOSFET
3http://en.wikipedia.org/wiki/Finite_element_method
4http://www.crosslight.com/Product_Overview/prod_overv.html

ACTEA 2009 July 15-17, 2009 Zouk Mosbeh, Lebanon

978-1-4244-3834-1/09/$25.00 © 2009 IEEE 432

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on July 26,2010 at 07:59:49 UTC from IEEE Xplore. Restrictions apply.

ENEXSS Integrated 3D TCAD system5; gTs by Global
TCAD Solutions 6; SEQUOIA Design Systems - Device
Designer7; Siborg - MicroTec: Semiconductor Process and
Device Simulator8; Silvaco tools (Atlas, S-Pisces device sim-
ulator with DevEdit, DeckBuild, TonyPlot and TonyPlot3D)9;
Synopsys Sentaurus Device: An advanced multidimensional
(1D/2D/3D) device simulator10; TiberCAD11 [1].

One of disadvantages of these tools is that users cannot
develop their own code for new methods of device simula-
tions, which is important for research and innovation.

There currently exist some open source or freely avail-
able tools for device simulation (sometimes only for
non-commercial usage or provided without source code):
Archimedes (2D Quantum Monte Carlo simulator for
semiconductor devices)12; FLOODS/FLOOPS13; General-
purpose Semiconductor Simulator (2D)14; NANOTCAD15;
Nemo 3-D16; nextnano - Software for the simulation of
electronic and optoelectronic semiconductor nanodevices and
materials17. Pre-processing and post-processing for these free
tools is limited.

III. CHOOSING FROM AVAILABLE FREE
COMPONENTS

A. Finite Element Meshers

It is very complex to create a code for generation of 3D
finite element mesh on arbitrary structures and therefore it
is better to rely on existing meshers. During analysis of
our NanoFEM platform project we took into consideration
various open source meshers libraries. From these, NETGEN
[2] and TetGen [3] seemed to be advanced in terms of
stability, generality, quality, previous usage in other scientific
projects and also suitability for our purpose.

B. Finite Element Simulation Environments

Some freely available open source environments for gen-
eral finite element method analysis provide collection of
components for tasks such as geometry modelling, mesh-
ing, visualization, common data structures, sometimes also
an extensible framework for simulation modules and finite
element solvers.

Gmsh [4] has some interesting features, such as integration
of NETGEN and TetGen, geometry editor (although very
basic and with only limited interactive features) and post-
processing. There is support for different regions (using

5http://www.mizuho-ir.co.jp/english/solution/enexss/memory.html
6http://www.globaltcadsolutions.com/
7http://www.sequoiadesignsystems.com/products.html
8http://www.siborg.ca/microtec.html
9http://www.silvaco.com/
10http://www.synopsys.com/Tools/TCAD/Pages/default.aspx
11http://www.tibercad.org
12http://www.gnu.org/software/archimedes/
13http://www.flooxs.tec.ufl.edu/
14http://gss-tcad.sourceforge.net/
15http://monteverdi.iet.unipi.it/~fiori/ViDES/ViDES.html
16http://cobweb.ecn.purdue.edu/~gekco/nemo3D/
17http://www.nextnano.de/

physical volumes). The user interface seem to be very non-
standard and rather inconvenient. Gmsh is using a text format
of mesh and data fields, for which it is easy to write a parser.

Calculix18 is a 3D structural finite element analysis appli-
cation. A graphical user interface seem to be less advanced
than in Gmsh or even Salome Platform. It comes with solver
CCX and pre- and post- processor CGX. It solves wide
variety of mechanical, thermal, coupled thermomechanical,
contact and field problems.

Salome Platform19 is a very advanced finite element envi-
ronment. Geometry editor is much more advanced than the
one provided with Gmsh, and there is Python functionality
for this editor (as well as for practically all other operations
available through graphical user interface of Salome). Visu-
alization and post-processing is much more powerful than in
case of Gmsh, there exists a well documented C++ library
for working with mesh and fields. There is a documentation
on integration of own C++ and Python components into
the Salome Platform. CORBA20 functionality allows to run
Salome components on remote servers, linking and integra-
tion of various simulation modules and control of simulation
flow. Components can define their own user interface. With
Salome Platform, we have a much more advanced and
powerful simulation environment, that we would have with
other solutions and components that we have tested. Salome
Platform is available under the free LGPL license.

ORCAN [5] is a software with some features similar to
Salome Platform, namely in component based architecture
and set of modules for geometry modelling, meshing, visual-
ization of results and automatic generation of user interface
for components. There are also linear algebra solvers and
material database. However, it is not as complete and mature
as Salome Platform and is no longer actively maintained or
developed since 2005.

We have decided to select Salome Platform, version 3.2.6
for geometry modelling, meshing, visualization of results and
integration environment for our simulation platform.

C. Finite Element Solvers

We also decided to make selection of a suitable free finite
element solver, that would make implementing equations
running on semiconductor devices easier and faster, then if
we would implement a new solver by ourselves.

We have reviewed many software solutions, libraries and
projects, which address solving partial differential equations
using the finite element method. From tens of candidates
the most interesting for us included: FEniCS/DOLFIN21 [6],
libMesh22 [7], Getfem++23 , Rheolef24, OOFEM.org25 and
OFELI26.

18http://www.calculix.de/
19http://www.salome-platform.org/
20http://en.wikipedia.org/wiki/CORBA
21http://www.fenics.org/
22http://libmesh.sourceforge.net/
23http://home.gna.org/getfem/
24http://ljk.imag.fr/membres/Pierre.Saramito/rheolef/
25http://www.oofem.org/en/oofem.html
26http://www.ofeli.net/

433

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on July 26,2010 at 07:59:49 UTC from IEEE Xplore. Restrictions apply.

We applied various evaluation criteria’s, such as ongoing
development, quality of documentation, fitness for devices
simulations, number of developers, community around the
project, available features, generality, easiness of use, ex-
tendibility and references from other scientific projects using
it. FEniCS/DOLFIN (LGPL license) in our evaluations and
comparisons was found to be the most suitable. Therefore,
for the selection of an optimal finite element method based
solver library, we selected DOLFIN/FEniCS version 0.7.3.

IV. COMPONENTS OF NANOFEM PLATFORM
A. Salome Platform

For pre-processing, i.e. namely defining the geometry
of physical device and meshing we use Salome Platform.
This way, we can use an advanced geometry editor and
automatic finite element mesher on arbitrary 3D structures
defined in the geometry editor. Geometry for the solved
case can be defined either in a graphical user interface or
using Python scripts. Quality tetrahedral meshes necessary
for FEM simulations are created automatically, and we can
define separate geometry and mesh groups. For visualiza-
tion and post-processing, we can use advanced visualization
features with 2D and 3D plots and graphs.

Salome Platform provides also functionality for exchang-
ing data between codes and solvers in memory, CORBA
to allow communication of modules on remote servers,
and persistent data storage of all data based upon HDF
format27 (developed by Boeing and NASA in the area of
Computational Fluid Dynamics) and MED format28.

Because of Salome implementation and because we use
nanostructures with very small dimensions, we had to multi-
ply all the coordinates of modelled geometry by the scaling
factor 109. We also count with this scale factor in our
modules based on DOLFIN and Salome libraries. If we
would use a smaller scaling factor (e.g. 103 or 106), we
would obtain errors namely when generating a mesh or
during visualization in Salome Platform.

By using Salome Platform, we save a lot of work and
effort, which otherwise would be necessary to design and
implement the mentioned features.

B. Finite Element Method Library DOLFIN

In order to implement equations, which would run on a
device with finite element method, we are using a finite
element library DOLFIN. DOLFIN is a C++ interface and
library of FEniCS. This library offers many advantages and
makes coding both easily and powerful. It supports iterative
and direct solvers (LU decomposition29, Krylov solver30)
for sparse matrices31, uses high-performance linear algebra
libraries PETSc (with MPI)32 and uBLAS33 for solving
systems of linear and nonlinear equations.

27http://hdf.ncsa.uiuc.edu/
28http://www.code-aster.org/outils/med/
29http://en.wikipedia.org/wiki/LU_decomposition
30http://en.wikipedia.org/wiki/Krylov_subspace
31http://en.wikipedia.org/wiki/Sparse_matrix
32http://www.mcs.anl.gov/petsc/petsc-as/
33http://www.boost.org/doc/libs/release/libs/numeric/ublas/doc/index.htm

DOLFIN supports general families of finite elements,
including arbitrary order continuous and discontinuous La-
grange finite elements, BDM elements, RT elements, BDFM
elements, Nedelec elements and Crouzeix-Raviart elements.
In DOLFIN, we use a C++ interface for communicating
low level routines (functions) for evaluating and assembling
finite element variational forms (UFC). DOLFIN is written in
C++ and is using simple, intuitive and well structured object
interface. DOLFIN is using various Krylov methods (the con-
jugate gradient method, the GMRES method, the stabilized
biconjugate gradient squared method) and preconditioners34

(no preconditioning, simple Jacobi preconditioning, succes-
sive over-relaxation, incomplete LU factorization, incomplete
Cholesky factorization, algebraic multigrid).

C. Automation of the Finite Element Method

One of important advantages of basing our computational
module on DOLFIN, is that we can automate the finite
element method [8]. Detailed knowledge of the finite element
method is not necessary to use and develop using DOLFIN.

This solves an important desire when designing simula-
tions for the devices: possibility for easy testing of various
provided equations, without necessity for manually program-
ming the finite elements. A required equation has to be
coded in the variational form format (with bilinear and
linear components a and L) and then coded using a code
with Python language syntax. A compiler utility FFC [9]
is then used to generate corresponding C++ class. From
these bi/linear form of equations in variational form, FFC
generates UFC forms for evaluating and assembling finite
element variational forms [10]. FFC makes automation of
discretization, i.e. the automatic translation of a differential
equation into a discrete system of equations. This saves
effort, which otherwise would have to be put in when manu-
ally programming finite elements forms when new equations
would be provided.

Standard variational formulation of partial differential
equations is used: Find u �V such that a(v, u) =
L(v) ∀ v � V̂ , where a : V̂ × V → R is a bilinear
form, L : V̂ → R is a linear form and (V̂ , V) is a pair of
suitable function spaces [9].

For the Poisson’s equation (1), where ε is permittivity, u
is electric potential and f is source function, defined in the
domain Ω, the corresponding bilinear form is (2) and linear
form is (3), where g is the Neumann boundary condition.

∇(ε∇u) = f (1)

a(v, u) =
�

Ω
(∇v ·∇u) ε dx (2)

L(v) =
�

Ω
vf dx +

�

∂Ω
εvg ds (3)

The corresponding Python style code for FFC compiler of
this equation is on Fig. 1.

34http://en.wikipedia.org/wiki/Preconditioner

434

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on July 26,2010 at 07:59:49 UTC from IEEE Xplore. Restrictions apply.

Compile this form with FFC:

ffc -l DOLFIN PoissonEps.form

#

element = FiniteElement("Lagrange", "tetrahedron", 1)

v = TestFunction(element)

u = TrialFunction(element)

f = Function(element)

g = Function(element)

eps = Function(element)

a = dot(grad(v), grad(u))*eps*dx

L = v*f*dx + eps*v*g*ds

Fig. 1. The variational form of the Poisson’s equation for the FFC compiler

Compiling this form using FFC results in a generated C++
header file with about 5000 lines, which can be used in a C++
code, such as in our computational module. More details can
be found in FEniCS/DOLFIN manuals [11], [12].

D. Salome Platform - FEniCS/DOLFIN bridge MeshAPI

We created a library called MeshAPI, which is dedicated
to establish connection and cooperation between Salome and
DOLFIN and which provides their functionality for compu-
tational modules. The provided features include work with
mesh, fields, material database, linear and nonlinear PDE
solvers, selection of Krylov methods and preconditioners,
boundary conditions and pre-coded solvers for equations.
MeshAPI also provides C++ wrappers for connection and
integration into Salome Platform and other functionality.

MeshAPI allows reading mesh from MED files to memory
(using MEDMEM API), processing mesh coordinates and
connectivities, working with groups of mesh (which can be
defined in Salome editor) and passing this information to
DOLFIN (to build mesh in memory). It provides some core
fields (such as source, flux, potential) meant to be used in
general device simulations. Custom fields can be defined as
well. The field data structure is based on Salome FIELD data
type, and we provide overloaded array access operators for
easy access of the items in the code, as well as support for
retrieving data from DOLFIN functions to MEDMEM and
saving all fields to Salome MED files.

1) Material Database: Material database is specified in a
XML file. Only the necessary parameters must be specified.
Transforming of a XML file to C++ structures in MeshAPI
is based on a SAX parser35 using Libxml236. For an example
of XML material database, see Fig. 2.

2) Materials and Basic Boundary Conditions: Salome
Platform promises DATA module, which would address
necessity of assigning materials and other characteristics
such as simple boundary conditions to a mesh. However,
this module is not available in Salome 3.2.6, so we have
decided to make our own replacement to this functionality.

We are using special format of naming of groups de-
fined on mesh in Salome. Groups are read in the code
to retrieve materials and simple boundary conditions. For
example, by naming groups such as: bottomOxide[SiO2],
metalPlate[Dirichlet=1.0] we can assign material and Dirich-
let boundary conditions. In MeshAPI, we have a code which

35http://en.wikipedia.org/wiki/Simple_API_for_XML
36http://www.xmlsoft.org/

<?xml version="1.0" encoding="UTF-8"?>

<materialDatabase xmlns="materials.xsd">

<material name="Si" description="(100)[Silicon]">

<parameter name="dielectricConstant" value="11.8" />

<parameter name="longitudeMassForElectrons"

value="0.98" />

<parameter name="transversalMassForElectrons"

value="0.19" />

</material>
<material name="SiO2" description="Silicon dioxide">

<parameter name="dielectricConstant" value="3.9" />

</material>
<material name="Air" description="Air">

</material>
</materialDatabase>

Fig. 2. Example of a XML material database file

is able to determine such various characteristics in each node
based on group numbers. More complex boundary conditions
can be specified in special C++ classes.

E. Our Computational Module

Salome Platform allows us to create custom computational
modules. Modules are implemented using Salome and MED-
MEM API described in [13]. They can be integrated into
Salome Platform (with or without graphical user interface),
using automatic conversion using hxx2salome tool, such as
described in [14], [15]. We use this possibility to create our
own module in C++, which provides methods for simulation
of the device. The equations are defined in separate classes
and are using DOLFIN and FFC. The module is using
MeshAPI and can be extended by defining new classes and
can cooperate with other Salome modules.

The module contains special routines, which are automat-
ically wrapped and can be used in Salome, including Salome
supervisor module [16] to connect with other simulations or
define simulation flow and parameters in Salome. Flow of
simulation modules can be defined by using an interactive
designer or Python scripting. It is possible to run simulation
modules or routines on remote servers.

V. OPERATING SYSTEM AND PORTABILITY

Salome Platform 3.2.6 supports only selected Linux distri-
butions on which runs properly. A more recent version 4.1.4
released in December 2008 is compatible only with recent
Debian and Mandriva distributions. Installation of DOLFIN
is currently complicated, namely in the case one does not
use recent versions of either Debian or Ubuntu. Although
there are provided packages for Debian, they cannot be used
if one desire optimal performance using PETSc or needs to
solve eigenvalues by using SLEPc37, as in our case.

Salome 3.2.6 does not support and does not compile or run
properly on Ubuntu or recent versions of Debian, however it
supports Debian Sarge (Debian 3.1), and there are provided
pre-compiled binaries of Salome for Debian Sarge. These
were the reasons that made us to prefer Debian Sarge as the
base for running NanoFEM platform, with Salome Platform
and FEniCS/DOLFIN components.

37http://acts.nersc.gov/slepc/index.html

435

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on July 26,2010 at 07:59:49 UTC from IEEE Xplore. Restrictions apply.

Because of our dependency on the Debian Sarge, we
have decided to develop and also make possible releases of
NanoFEM platform as VmWare38 virtual machines39. The
first advantage is that users of the software would not have to
perform in general difficult installation of FEniCS/DOLFIN
and Salome Platform, which varies on different Linux distri-
butions and on some distributions it is not possible at all. The
second advantage is that this way the NanoFEM platform can
run also on other operating systems like Windows and Mac
OS X, regardless of portability limitations of various used
components.

VI. EXAMPLE SIMULATION AND
VISUALIZATION OF A FINFET TRANSISTOR

We present an example of simulation in NanoFEM plat-
form. On a 3D structure consisting of 14 geometry groups
(allowing to assign different materials and boundary condi-
tions) forming a FinFET transistor, we calculate the Poisson’s
equation (1) with Dirichlet boundary conditions applied. We
had run the simulations on meshes with number of elements
in orders of hundreds of thousands of finite elements. Fig.
3 depicts construction of transistor geometry in Salome
Platform, Fig. 4 depicts mesh of the transistor consisting with
268.920 finite elements (tetrahedrons) and 46.479 nodes.
The simulation on this mesh using the Krylov solver (with
biconjugate gradient squared method and with incomplete
Cholesky factorization preconditioner), including reading of
the mesh, all initializations, preparations of solver and storing
of all results takes about 170 seconds (on Intel Core 2 Duo,
1.66 GHz and VmWare on Windows Vista). The simulation
process allocates about 220MB of memory. After finishing
the simulation, we can use various visualization and post-
processing capabilities. For instance, we can visualize scalar
map plots of electric potential in the transistor, as is depicted
on Fig. 5 and make 3D cut plots, as is on Fig. 6.

Fig. 3. Modelling geometry of the FinFET transistor

38http://www.vmware.com
39http://en.wikipedia.org/wiki/Virtual_machine

Fig. 4. Automatically generated mesh of the FinFET transistor

Fig. 5. Scalar map of the electric potential profile in the FinFET transistor

Fig. 6. 3D cut of the electric potential profile in the FinFET transistor

436

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on July 26,2010 at 07:59:49 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

NanoFEM platform is a new research environment for
TCAD simulations of nanoscale devices based on the fi-
nite element method. One of important advantages of the
NanoFEM platform proposal is that its two major com-
ponents - Salome Platform and FEniCS/DOLFIN - are
pieces of sophisticated and very high quality open source
finite element software, which are under active and long-
term external development. Therefore, we do not have to
care about very time demanding design, development and
maintenance of a finite element pre-processor, post-processor
and a finite element simulation library. We can concentrate
only on developing and extending of our MeshAPI and
computational modules. This part is relatively small and
simple and therefore for instance one computer engineer is
enough to keep maintenance, extending and coding of the
NanoFEM platform (or similar solutions), while physicists
can concentrate on mathematical analysis of equations to test
on nano-devices and providing them in a variational form
format. This allow software developers/engineers and users
(e.g. physicists, mathematicians, researchers) of NanoFEM
platform to work separately and independently of each other
and without necessary expertise in both fields.

The NanoFEM platform design efforts to provide solutions
addressing the following goals and requirements:

• Flexibility - simulation user and developers should be
able to modify and create physical parameters, boundary
conditions or even whole governing equations;

• Simple, yet powerful definition of the solved problem
allowing to concentrate on defining equations to solve,
rather than necessity to manually program finite ele-
ments;

• Interactive pre-processing and post-processing (namely
geometry definition, mesh generation, visualization);

• Automatic generation of meshes suitable for FEM;
• Ability to control flow of simulation modules (either

with an interactive designer or a scripting language);
• Ability to run simulation modules and methods on

remote servers;
• High performance due to usage of performance optimal,

quality open source components and libraries;
• Control of sparse linear algebra solver methods;
• Usage of standard formats for exchanging and storing

simulation cases and results;
• Support for XML material database;
• Good extendibility and modularity;
• Portability – using virtualization possibilities to be able

to use the software on different operating systems,
regardless of eventual portability limitations of various
used code components.

We believe that others could eventually consider to build
similar environments as our NanoFEM platform for general
finite element simulations. The core necessary components,
Salome Platform and FEniCS/DOLFIN are available under
the free LGPL license. Although we currently do not provide

MeshAPI source codes and do not have a public release
of NanoFEM platform, others could still implement their
own similar codes aimed to connect Salome Platform and
FEniCS/DOLFIN and compute their own scientific equations
and create similar solutions as ours.

B. Future Works

There are many options for further development of
NanoFEM platform. We would like to test and implement
various complex equations, test complex simulation flow
and coupling scenarios, test advanced exchanging of data
between modules using Salome Platform supervision mod-
ule, design and implement complex boundary conditions
specification, either by using XML files, or by using Salome
data module for these features, when they will be available.
We would like to make native Debian and also Windows
versions (when all used components will be ready for such
eventual port), without necessity to use virtualization.

REFERENCES

[1] M. A. der Maur, M. Povolotskyi, F. Sacconi, G. Romano, E. Petrolati,
and A. D. Carlo, “Multiscale simulation of electronic and opto-
electronic devices with TiberCAD,” in Simulation of Semiconductor

Processes and Devices (T. Grasser and S. Selberherr, eds.), pp. 245–
248, Springer Vienna, 2007.

[2] J. Schöberl, “NETGEN: An advancing front 2D/3D-mesh generator
based on abstract rules,” Computing and Visualization in Science,
vol. 1, no. 1, pp. 41–52, 1997.

[3] H. Si, A Quality Tetrahedral Mesh Generator and Three-Dimensional

Delaunay Triangulator. http://tetgen.berlios.de, 2006.
[4] C. Geuzaine and J.-F. cois Remacle, “Gmsh: a three-dimensional finite

element mesh generator with built-in pre- and post-processing facil-
ities,” International Journal for Numerical Methods in Engineering,
2009.

[5] J. Treibig, S. Berler, and U. Rüde, “ORCAN: A platform for complex
parallel simulation software,” in ARCS Workshops (W. Karl, J. Becker,
K.-E. Großpietsch, C. Hochberger, and E. Maehle, eds.), vol. 81 of
LNI, pp. 295–304, GI, 2006.

[6] T. Dupont, J. Hoffman, C. Johnson, R. C. Kirby, M. G. Larson,
A. Logg, and L. R. Scott, “The FEniCS project,” Tech. Rep. 2003–21,
Chalmers Finite Element Center Preprint Series, 2003.

[7] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, “libMesh:
a C++ library for parallel adaptive mesh refinement/coarsening sim-
ulations,” Engineering with Computers, vol. 22, no. 3, pp. 237–254,
2006.

[8] A. Logg, “Automating the finite element method,” Archives of Com-

putational Methods in Engineering, vol. 14, no. 2, pp. 93–138, 2007.
[9] R. C. Kirby and A. Logg, “A compiler for variational forms,” ACM

Transactions on Mathematical Software, vol. 32, no. 3, pp. 417–444,
2006.

[10] M. S. Alnaes, H.-P. Langtangen, A.Logg, K.-A. Mardal, and
O. Skavhaug, UFC Specification and User Manual, 2008.
http://www.fenics.org/ufc/.

[11] A. Logg, G. N. Wells, et al., DOLFIN User Manual, 2009.
http://www.fenics.org/dolfin/.

[12] A. Logg, FFC User Manual, 2007. http://www.fenics.org/ffc/.
[13] V. Bergeaud, N. Bouhamou, N. Crouzet, E. Fayolle, P. Goldbronn,

and J. Roy, MEDMEM user’s guide, 2008. http://www.salome-
platform.org.

[14] V. Bergeaud, SALOME component integration tutorial, 2008.
http://www.salome-platform.org.

[15] hxx2salome : a Salome component generator. http://www.salome-
platform.org/, 2008.

[16] A. Ribes and C. Caremoli, “Salome platform component model for
numerical simulation,” in COMPSAC ’07: Proceedings of the 31st An-

nual International Computer Software and Applications Conference,
(Washington, DC, USA), pp. 553–564, IEEE Computer Society, 2007.

437

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on July 26,2010 at 07:59:49 UTC from IEEE Xplore. Restrictions apply.

